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It was the best of times, it was the worst of times,
it was the age of wisdom, it was the age of foolishrness.
it was the epoch of incredulity, it was the season of
of Light, it was the season of Darkness, it was
the spring of hope, it was the winter of despair, we had
everything before us. we had nothing before us,
we were all going direct to Heaven, we were all going
direct the other way-in short, the period was so aar
like the present period, that some of its noisiest
authorities insisted on its being received, for good
or for evil, in the superlative degree of comparison only.

Charles Dickens Introduction
A Tale of Two Cities

This document tells something about research in
information processing at Carnegie Institute of
Technology in 1966. It tries to say it mainly by a series
of essays, written by some of us in the environment,
that reveal aspects of computer science of concern here.
Although we have included a certain amount of
descriptive material-listings of people, reports, and
so on, we have avoided the long compilation of small
paragraphs of progress, common to most progress
reports. Such compilations have their uses, but mostly
they just create a fiction. They present the appearance
of a neat organization or research-here is what is going
on at Carnegie (or wherever). But research cannot be so
packaged, and the picture of a social process under
control is largely spurious. In the main this is because
research efforts are related to their ultimate goals by a
strong bond of hope, as well as by a weak chain of
rationality. In the idiom of problem solving programs,
one has at best tests to avoid foolishness. No reliable

4 differences can be had between a current state of
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knowledge and a desired one. To be sure, one must
move forward and explore. So one picks a goal-
one decides to build a new programming language,
or to prove that a program does what it claims.
But the goal itself is only a surrogate, only a means to
an end. There will be no difficulty recognizing the
end: the new technique; the new insight into the nature
of information processing; the new whatever; each will
be clear enough when it occurs (at least to a small
subset of the field). But these final results often bear
only a tangential relation to the initial surrogate goals.

What, then, can be said about progress? Certainly the
scientific papers that have been produced should be
put forward. They represent science in units that seem
appropriate to the scientists. The public and social
character of science says that each piece of work
shall be communicated to the field in a packaging of
the scientist's own choosing. But beyond that, perhaps
a communication whose degree of precision matches
the reality is most appropriate. That is what thisPo

report attempts to be.
Is it appropriate to infer from these essays the future
directions that computer science will take at Carnegie?
Yes, as long as one takes into account the selection
from the total research activity.that has occurred
here. Within the Department of Computer Science and
the Computation Center there is work on graphics,
on proving that programs do what they purport to do,
and on systems programming. Moving outward,
information processing models of human behavior are
a major concern of the psychology department;
management information systems is an area of active
research in the Graduate School of Industrial
Administration; and the development of problem
oriented programming languages is going on in several
engineering departments. None of these efforts are P
shown here, except most obliquely.

5
But selection, stringent as it is, seems to us appropriate,
since it permits a glimpse, not only at the content of
current research directions, but at the intellectual
climate in which all the research at Carnegie
is being done.



The problem is not how to produce great men,
but how to produce great societies. The great soc;ety
will put up men for the occasions.

A. N. Whitehead
Science and the Modern World
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David H. Nickerson, Director

as a public utility. We maintain the Center for the
benefit of a large class of users. In the last year, over
1500 users registered to use the Center. Of these,
approximately 500 were pursuing research projects
which required the use of a computer for successful
completion; 500 were using the computer for course
work; and the remaining 500 were a blend of computer
scientists (about 130), and users with specific
computational needs of an industrial (about 50),
academic (about 250). or computing support (about 70)
nature. Most of our usage is for compilation and

Managing a Computation Center testing of individual programs. Most such programs
are written for the purpose of solving a problem or
demonstrating a concept. Very few user programs are
executed repeatedly over a long period of time; thus, we
have few so.called "production runs".

The presence of a large computer science effort on
campus, and the commitment to make the results of its
research available to the community, leads to
a unique set of responsibilities. This commitment

The Computation Center at Carnegie Institute of leads us to constantly introduce novel features. At the
same time, we are to keep the environment relatively

Technology is a formal structure designed to ensure stable over the duration of a typical large programming
three principal interactions development project (2-4 years). This stability is

To make the work of one information scientist necessary to avoid reprogramming of large research
available as a tool for other information scientists. programs.

To provide a facility for educating graduate and Interaction with other scientific communities is a
undergraduate students in the Information Sciences. two.way process. Many times other communities will

develop tools of interest to our own community.
To provide a flexible research tool to other For example, at MIT a language may be designed for
researchers on the Carnegie campus to
enable them to exploit the advances in computing talking about a certain class of string manipulation
achieved here or elsewhere. operations. Our community wants to use this kind of

language and to teach courses in it, yet it is a non-trivial
The central management problem is to achieve the problem to make available a local version of the
three principal objectives in an optimum sort of way. language. It is the responsibility of the Computation

Center to invest the effort necessary to make a

The organizational philosophy proposed borrows local version available.
heavily from contemporary ideas on business 8
organization. Most persons would characterize our To give some appreciation of the type and volume of
solution as 'business-like'. Perhaps it will be useful to work done at the Center, two charts reflecting operations
consider a brief description of Carnegie's Computation are included. Chart A shows the principal languages
Center and what we mean by 'business-like' before in use with the percentage of time used by these
discussing our organizational philosophy, languages. Chart B shows the various departments

which use the Center and their percentage of total
Carnegie's Computation Center is intended to operate usage. An appreciation of the computing scientist's
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Chart A

viewpoint of the Center's responsibilities may be Program Summary for May I to May 31, 1966
gathered by reading Reference 1, and the objectives System Number of Percent
of the rest of the community are discussed in Reference Name Programs Total Number
2. When we speak of a computation center, we mean
one with similarities in form, size, or function to ALGOL 9360 46.02
Carnegie's Computation Center. THAT 35 0.17

We now turn to the more complex issue of what we LIST 33 0.16

mean by 'bLfsiness-like'. We will immediately engender GATE 569 2.80

controversy by stating that the concept of business AND 2944 14.47

management to be employed is the modern management TIPL 1 0.00

concept. One of the clearest statements of the IPLV 697 3.43

managerial dilemma, which leads to the development JOBCD 33 0.16

of control systems for modern business, is given in TAC 383 1.88

Alfred P. Sloan's book. He is discussing his analysis MTHAT 38 0.19

of General Motors' failure to see a downturn in demand WHAT 1 0.00
in the 1924 model year.3  SCADS 1383 6.80

MAGIC 5 0.02

Now what did this tale of internal conflict over XANDU 1 0.00
statistics come down to? Essentially, it was a matter MONTH 1 0.00
of statistical controls versus salesmanship, which ALIBN 40 0.20
was brought to a head in 1924 by a recession in COMET 2 0.01
the general economy following directly upon the BOOLE 667 3.28
boom year of 1923. At that time, the salesmen and
the general managers were caught in the illusion HANDY 52 0.26
of riding the wave. In our then excessively ANDRE 88 0.43
'decentralized scheme, I let them ride. Actually, COMIT 6 0.03
however, this was not a mere bias in favor of the UPDAT 232 1.14
salesmen, for I had no convincing information with
which to counter their intuitions. The information TIPLV 422 2.07
was weak because it was neither accurate nor FORTN 171 0.84
comprehensive enough. It was arrived at by XTHAT 1 0.00
inference from dealer stocks and unfilled orders. MNTH 47 0.23
This was good enough over a pet iod of time, but
the critical trouble was precisely the length of the MARK 2523 12.40
period. We knew nothing about the most recent five NOTE 64 0.31
or six weeks of our car sales, and this gap, therefore, GAME 3 0.01
was filled with the speculations of the protagonists FORML 293 1.44
-the statisticians with their trend lines on the one TIME 73 0.36
hand, and the salesmen with their optimistic
intuitions on the other. I was, as I have said, in the BILLI 6 0.03
middle without any means to judge the contending TREWQ 4 0.02
claims-not a comfortable position for a GOGO 45 0.22
chief executive officer. SPITE 83 0.41

FAUST 2 0.01
A quarter of a century earlier, Thorstein Veblen had HADRT 2 0.1
described the emergence of the managerial technology MNTHM 2 0.01

needed to provide the tools Sloan was to implement. MNTHU 8 0.04

After first observing that the classical concept of cause CALL 11316

and effect was being replaced by a concept of the

interaction of process to produce a result, he analyzed TOTAL 20339

It



Chart B

the technician's metaphysics. 4  Typical Monthly Usage for Computation Center

To the technologist, the process comes necessarily Total No. Actual
to count, not simp!y as the interval of functioning 'Department Programs Time Ratir
of an initial efficient cause, but as the substantial
fact that engages his attention. He learns to think in
terms of the process, rather than in terms of a Administration 0 0.000
productive cause ard a produci beiween which the Biological Sciences 17 0.000
process intervenes in such a manner as to afford Business + Social St 0 0.000
a transition from one to the other. The process is
always complex; always a delicately balanced Chemical Engineering 282 0.025
interplay of forces that work blindly, insensibly. Chemistry 907 0.074
heedlessly; in which any appreciable deviation Civil Engineering 1637 0.076
may forthwith count in a cumulative manner, the Computer Science 3213 0.077
further consequences of which stand in no organic Electrical Engineering 2646 0.174
relation to the purpose for which the process Elih 0 0.000
had been set going. English 0 0.000

Fine Arts 41 0.007
By 'business-like' we mean the elaboration of the Graphic Arts 8 0.000
processes required to achieve the objectives of the Home Economics 0 0.000
computation center, the systematic reduction of the Industrial Administration 1449 0.107
interaction of these processes to measurable Mathematics 2055 0.034
phenomena, and the controlling of the processes to Mechanical Engineering 2695 0.173
ensure sensitivity to the original objectives. We also Margaret Morrison 0 0.000
mean the simultaneous elaboration and refinement of Metallurgical Engineering 79 0.002
the objectives themselves and their interpretation Music 52 0.007
in a changing context. Physics 739 0.047

President's Office 0 0.000
Our organization at Carnegie is designed to be Psychology 247 0.016
consistent with the processes which we have designed Student Affairs 8 0.000
to achieve our objective. Because we feel that the Systems Communications 765 0.040
underlying processes are similar to those underlying Computation Center 1386 0.045
large segments of modern industry, our organization Comp. Center Research 1042 0.i45
parallels industrial organization. There is a production Development Priority 11 0.001
department (Operations), a marketing department System Maintenance 711 0.043
(User Relations and Planning), a design department External 263 0.006
(Programming and Engineering) and a research group
(Computer Science Department). Grand Total 20253

By organizing in such a manner, we are committing
ourselves to look at the world in a certain sort of way. lack of a "structured" environment.
The use of words like "control", "process", and
"measure" imply that we have certain preconceived To understand the case for the unstructured
notions as to what should be going on. It commits us to environment, one needs to be reminded that any time
an examination of the environment, and the structuring an organization comes into being, there sprouts within
of the environment to facilitate the development of that it a self-justifying concept, or world view, which strongly
which we think belongs there. Such a viewpoint creates reinforces views which are compatible with its continued
what one could call a "structured" environment, existence in its present form; and which discourages
There are several centers which make a virtue of the developments which imply change, however unrelated



they are to the stated objectives of the organization, inconceivable method of research. Paradigm
The most positive argument then against the selection procedures and applications are as necessary to
and structuring of an environment for research is that science as paradigm laws and theories, and

the environment in some sense dictates the research they have the same effects.

undertaken. Thus, in a structured center, some work There are positive arguments for furnishing the
might not be initiated and other work will proceed research tools. Our own observation is that in an
along previously trodden paths. Most work at Carnegie, unstructured environment, he will first spend
for example, takes place in ALGOL because ALGOL is considerable time selecting his tools before performing
the best maintained, most flexible language available, his research. This approach requires that the researcher
Several local programming systems are implemented be abreast of the programming technology in the areas
using ALGOL as a tool, and are limited in some sense in which he will need tools, or that he be content to
by ALGOL. In a completely unstructured environment, use methods which could be inappropriate, inefficient,
these languages might have been implemented some or obsolete. He also commits himself to a preliminary
other way, and thus had more flexibility in input/output, testing and refining of tools finally selected. This
more macro capability, more program segmentation would be satisfactory in an environment where tools
capability or, to be general, more potential utility, work under a wide variety of environmental conditions.
The point is that they may have been limited by the This is not the case in the Information Sciences. The
tools (ALGOL) in the environment, tool exists for some time before it is published. When

it is published, it is generally not completely described
The most complete answer to such a statement first and, all too frequently, it will run on oniy one particular
clarifies that; in any event, the user will use a set of machine or type of machine, and requires a significant
tools to perform his research, and he will seek to use amount of work to become useful on another machine.
the best available. The presence of a large well.orderec It seems as likely that the user will bog down due to
set of tools would not in itself preclude the use of the lack of a particular tool, or use an inadequate
other tools ifthe researcher would have, under other tool, in an unstructured as in a structured environment.
circumstances, been able to find them. In fact, it on This is particularly true if the structured environment
fundamental to our approach in graduate education recognizes that one of its responsibilities is to maintain
that the presence of a cohesive set of arguments for adequate facilities for the "m3verick" user who does
a given position is an asset and not a hindrance in not feel that the officially maintained and developed
generating new research. tools are adequate for his use. Users must be allowed

the freedom to "suffer" outside the maintained
This point of view is also examined by Thomas S. Kuhn environment as long as they are aware of the price
in his essay, "The Structure of Scientific Revolutions" and are willingto go it alone.
He first develops the notion of a scientific paradigm.
This is a much broader view than our concept of a A second major argument, which we have advanced
structured environment, i.e., one in which methods, previously 2, concerns the stability of the unstructured
tools, and the problems to be solved are shared by a environment. It has been our observation that theenvironment.HItehasbeencoureobservationcthat th
community. However, he comments specifically on principal defense against the inadequacies detailed in
standard too;s and procedures. He first explores the the preceding paragraph has been the use of the
inadequacies which a set of shared tools can lead researchers iemselves to do systems work, thus
to and decides that the advantages outweigh the creating a defacto structured environment. The difficulty

10 disadvantages. He concludes- with this approach is first, that the researchers tend

Ought we conclude from the frequency with which to become service agents instead of researchers and,

such instrumental commitments prove misleading second, that many times systems become unserviceable
that science should abandon standard tests and for !ong periods of time due to the absence of their
standard instruments? That would result in an sponsors. Also, we have noticed a tendency in the



researcher to become "committed" to his approaches a hospital. We did not exclusively use any of these
because of the tremendous amount of effort required view points in planning our organization, but look upon
to generate a new approach. Finally, inevitably the ourselves as an ordinary industrial activit% with a
researcher "freezes" his tool development, and thus highly technical product line.
ends precisely where he did not want to be in
the first place. While the strong industrial organization does not

preclude decentralized operation, it certainly prefers
The above arguments have concerned themselves centralization. We have one large computing center

r primarily with fundamental intellectual arguments with several smaller centers for specialized uses.
against structured research environments. There is These centers, as a matter of policy, cannot rent time
also a variety of organization which is rigidly structured, nor compete with the main computing center. This
but which does not overtly concern itself with the wider involves no fundamental intellectual argument; we
issues of its overall objectives. Generally, such a center would actually prefer several strong centers to one
becomes rigidly fixed on the achievement of one or strong center if there was enough capacity to run the
two relatively minor goals and, as a result, fails to largest program as well as the smallest. We have one
contribute constructively to its environment. One center center almost solely to insure that our facilities are fast
might, for example, emphasize capacity, another and complex enough to satisfy the larger user. There
become the promulgator of a particular language or is also the point that access is more uniform and
technique at the expense of its mavericks, yet another controllable from one point than from several.
center will attempt to eliminate all overhead expense.
Each of these variants of the structured approach Many universities have confined their computation
reflect management shortcomings which are well centers to one educational department, generally under
understood by the more successful modern day the supervision of a chief scientist. Most often, this
businessman. The principal weaknesses in all such center is in the mathematics or electrical engineering

t. endeavors is the way chosen to organize them. departments. The most positive argument for this

approach is that an umpire is needed to settle questions
It will be useful in drawing an analog to the industrial of priority and capacity, and that a single, strong voice
world to find a close parallel between our activities and will provide cohesive direction. This approach, however,
those of industrial organizations. Several comparisons simply does not recognize that the computer is now a
suggest themselves. Many see the computation center fundamental tool required by some and of great utility
as an evolving public utility. Persons who take this to others. At Carnegie. we have a sufficient supply of
view are interested in the accessibility of the center, technical talent and report to a high enough
the reliability of its operation, and the ease with which administrative level to facilitate, if not insure,
it is used. Others see the computation center as an reasonable growth and service. While we have broad
advanced engineering firm producing complex technical participation and use at Carnegie, there is still an
products of limited lifetime. Persons who take this view aggressive exploration of new applications in all areas,
expect us to regularly produce innovations of markedly particularly in areas other than mathematics and
increased value'to the community. One who sees us electrical engineering.
as a utility thinks we should operate similarly to an
electric company. One who sees us as an engineering A popular organizational approach is project

y firm would expect us to operate like an aerospace firm. management. In such an organization, no single
Still others see us as a combination library and service individual is solely concerned with either operations
facility. Persons who take this view generally have a or programming, but certain key individuals have

e particular puzzle to solve, and are directed to the responsibility for key projects within the center.
computation center as the proper place for solving Whether this is a good organizational plan depends upon
such puzzles. These persons expect us to operate like the rature of the computation center. If, as at Carnegie,



there is an underlying fundamental operation to be output we are measuring.
carried on day after day; i.e., certain large programming
service facilities to be maintained acccrding to a set Fundamentally, of course, we produce 'moments' in

4 schedule of availability, then, in fact, the project leader time. These are produced inexorably as the day
concept is unsatisfactory. If, however, the computational progresses. Good moments cannot be stockpiled, nor
facility is primarily used as a job shop with no fixed can bad moments be repaired. The quality of the
facilities other than the computer, then it is conceivable moment can be judged in a significant way-it is judged
to organize project leaders under a chief engineer or, by whether anyone is able or willing to consume it.
if the size of the installation warrants it, under a Some moments are of routine significance and
chief engineer who worries about technical problems capability, others are of high cost and complexity,
and a project manager who worries about due still others are useless to anyone.
dates and budgets.

The Manager of User Relations and Planning is chargad

Having discussed various other organizational schemes, with the responsibility of producing quality. He is to
we now turn our attention to t.iat selected at Carnegie. ensure, first of all, that the product offered will be
We seek to provide the user with a stable, economical consumed and, secondly, that distribution within the
service of broad capability, which is sensitive to his overall area is in accordance with the policy. This
needs, and which can easily be evaluated. On the other manager has three functions reporting to him: the
hand, we tend to have our own world view and to be User Consultant, who is charged with helping users
inflexible in particulars. We will now discuss how we utilize the product, and with interpreting the users'
apply our philosophy considering the various viewpoint; the Technical Writing Staff, which is charged
administrative parts of the Center, how they are with maintaining documentation at the highest level
like their industrial counterparts, and how they consistent with the technical information available,
contribute to the total. budgeted funds, and user interest; and the Planning

section, which is responsible for preparing long-range
Fundamentai to our point of view is the notion that, and short-range plans. The long-range plans are two-
as a center, we produce one or more products which and five-year projections of facilities to be made
are of use in achieving our objectives. These objectives available, and the short-range plans are the yearly
are stated in terms of interaction, if we can measure Iudget, schedules for facilities and software
the pressure to interact and the amount of interaction installations. A function that logically belongs here,
taking place, then we can tell if we are succeeding but which is not at present included, is Systems
as an activity. Maintenance. This corresponds to the field engineering,

or technical support, facility in an industrial concern.
It belongs here because an organization's Production

Measurements come in pairs; if we produce a large Department is notoriously insensitive to complaints.
quantity of low quality moments, we will have failed.
It is equally true that a limited quantity of high quality
moments would be, in our case, a failure. The While our Planning and User Relations Department is
organization we have parallels two underlying processes concerned with interpreting the Center and its policies
These processes are designed to produce both quantity to the users, and representing the user viewpoints to
and quality. We feel that we are 'business-like' first the Center, the Operations Department is charged with

12 because we deliberately seek objective measures of producing marketable moments. It does so by
performance, second, because we seek two such minimizing the number of moments which are not
measures for every organizational activity (one consumable. The Department is composed of three
measures quantity, the other measures quality) and, groups, each of which contributes to the achievement
finally, because we seek to constantly improve our of its objectives. The first group is the Operators. They,
performance by redesigning the processes whose in conjunction with maintenance engineers, control the

I
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activities of the hardware/software complex which is business. The output from this research group as
the capital equipment utilized in moment production. developed by design and produced by operations is
The second group, Systems Engineering, is responsible what keeps us on top of our market. It also gives us an
for recording the disposition of every moment of the independent, in fact aggressive, evaluation of our enc;
day and determining the best possible allocation of our product. Choosing projects to implement is our
resources to meet current demands. Starting from a hardest single management task. That task would be
base number of hours, it allocates the time into various impossible without the counterbalancing forces of
categories. An example of this analysis for May, 1966 marketing and production in our counsels.
(a heavy month in a university) is shown in Figure 1.
The third group, Systems Maintenance, is charged with The opportunities for weaknesses in the organization
both routine and emergency maintenance for all selected are many. This is easily verified by observing
released hardware and software of the Center. similar organizations in the industrial world. Production

can become more concerned with stability than with
In a volatile technical environment, a company which being responsive to customer needs. Marketing can
does not produce new products will scon lose its lead us into products which are too esoteric or too
customers. There are splendid opportunities at Carnegie mundane. Marketing and production can become
to exploit technical advances which simplify operations involved in struggles to dominate planning. However,
or increase utility. We, therefore, have a Product Design the positive aspects of choosingthis particular
Department. Actually, it is organized as two separate organization are first, it works; second, its mechanisms
6fforts-Programming and Engineering. are, generally speaking, well understood by the

administrative interface of the Center; and finally, much
Engineering serves the useful function of keeping the literature is available which proposes, outlines, and
hardware used in the Center as current as economically explains the utility of various administrative
feasible. The engineers are responsible for keeping us formalisms in such a context.
abreast of hardware technology and recommending
changes to, or alterations of, the installed equipment. The development of a cohesive management structure
They also design special equipment as needed. is meaningless if one does not have the ability to

correlate authority and responsibility. The ability to
Programming is charged with designing the software assign responsibility is in most concerns linked to the
facility which, together with the hardware facility, ability to measure results. Thus, a key part of any
produces the product. This is rather like carrying coals organizational question is the accounting theory
to New Castle because the faculty and graduate students used to judge it.
who are excellent programmers-even system
programmers-outnumber the programming staff Project accounting seeks to collect the cost associated
10 to.1. Nonetheless, the mastering of any given field in achieving any clearly defined goal. In such a system,
of programming is a full-time job in itself. Programming all expenses which can be clearly traced to a specific
is organized into three groups: Systems Programming, effort are collected and analyzed against funds budgeted
which concerns itself with all long-term, non-language for the effort. This method of accounting is used in
software development; Language Development, which many commercial computer centers. It is inherited
is self.explanatory; and Special Products, which handles from design projects of a similar nature, and also gains

14 any development which is either not clearly in a specialty feasibility if one has a project type of organization. 15
group or is too large or too small for the specialty groups.

One way of spotting such an organization would be to
The graduate department in computing science offers seek for a situation in which a large percentage of
us a research environment of high quality. It also has compiling and assembly occurred. But should such a
the feature of consuming the basic product of the center ignore its compiling and assembly programs?

--



If, as at Carnegie, a major portion of the time is devoted only meaningful way to cost account a center. This
to these tasks, then they are the production programs leads to the derivation of a formula, as outlined above.
of that center. It is puzzling to see American business and the charging of average cost to everyone
concentrating on efficient operation of its "production" independent of the demands they make upon the
programs but either not seeing or not caring about the facilities. This means that a customer who uses ALGOL,
efficiency or speed of assemblers and compilers. This developed at a high cost over a period of years, pays
is true even where these programs occupy 20 to 30% exactly the same price as one who uses a card punch
of computer time at an installation. Some measure of utility routine which came with the machine. This is
the magnitude of the difficulty can be sensed by analogous to charging the same for an airplane and
realizing that the initial announced speed of the an automobile because both burn gasoline! It also
0S/360 assembler was approximately the same as the means that a large research project, which makes
speed of Carnegie's ALGOL Compiler. despite the fact heavy demands upon the system, pays exactly the same
that the assembler was running on a machine basically rate as an undergraduate who only uses the system
many times faster. Other comparisons between COBOL when no one else reeds it. Further, a computation
or FORTRAN compilers have revealed order of center which has a mixture of users paying this rate
magnitude differences of which most users were penalizes itself if it improves its performance because
unaware. Another very similar situation concerns the speeding up its operations will cut its billing and force
debugging aids available at a center. At Carnegie, the it to attract new usage. The seasona! nature of work
addition of a helpful debugging concept in ALGOL- at a university complicates this even more. We only
if it cut the amount of debugging in half, for example- add research customers in the fall. This subject is
might free 20% of machine capacity. One must exhaustively treated in 2.
conclude either that only in a shop which uses no
formal systems at all would it be a good practice to Yet another alternative is responsibility accounting.
collect cost only on a project basis or that to truly This approach traces expenditures to the person who
control all variable cost, the nature of a project must actually controls the expenditure. Many computation
be stretched to include a host of quasi-permanent centers of the author's acquaintance are organized
projects which are concerned with non-organizational under some variation of this principle. The difficulty is
facets of the environment, that most of them use this scheme to organize and use

The accounting theory used by many centers is that product costing to account, hence they are inherently
of prodccotg Theore arse any d entersins t incapable of reacting to the information from their
of product cost. There are several different versions of accounting systems. Responsibility accounting is
product costing. The one most commonly used in achieved by the division of the computation center into
comptation centers is full absorption cost accounting, cost centers, each such center being in control of some
That is to say, every dollar spent is eventually absorbed specific aspect of the operation. Usually, the division
into the cost of some product. The standard products is one of operations, design, and support activities.
for control purposes are computer hours. This ties The first question is, "Does such a cost center structure

back to our earlier discussion of what our products are. adequately reflect the responsibility situation?" It does

Therefore, the control situation, as it exists now, is to rer ee a goo re c on sf iorganiation c tro.

take the total dollar expenditure and divide it by the total The operational characteristics of the center are such

hours produced to arrive at an average cost per hour. Tha theretisa shrang e cntro areing,
that there is a short-range control loop (marketing.

15 operations) which requires fast positive decisions and
This practice leads, in the first place, to severe pragmatic oriented people to implement them. There is
complications in discussions with auditors and another longer range control loop (design) which
accountants and, in the second place, to poor requires complex decisions implemented by theory
operational control of the center. Most accountants oriented individuals. The two functions do not
begin with the assumption that product costing is the comfortably report to the same person because they

- -~ ~~ --- - - - -



require more filtering and balancing than can be
accomplished in one management level.

The second question is, "Do the accounting principles
employed tend to support or undercut desirable

P improvements in performance?" Whether responsibility
P . accounting is adequate depends more on correct cost

distribution than on anything else. If, for example,
non-deliverable moments are not isolated and charged
to someone, then there will be no incentive to eliminate
them. At Carnegie, we isolate several categories of
lost time; i.e., non-productive time, and charge these,
figuratively speaking, to the Manager of Operations.
Thus, he has an incentive to improve his performance.
However, we have not taken the obvious step of isolating
programming facilities and deriving a measure of their
efficiency to judge the programming group. One might,

Sft ftfor example, charge all compile time to programming.
fThis is really no less objective than holding the Manager

of Operations accountable for all computer time as a
0 0 0 ftdeliverable product. If compile time were charged to the
P6 f 4 programming group, and we could see that we spend

S.m almost 30 % of ow time compiling, we would feel the
- need for more programmers than operators. This whole

0issue needs a great deal of analysis and represents
UP of= the next area for attention at Carnegie.0.. 0 *a " ;;1W a4PO

r o ir It' ae a" - ' o; e ta 0 4 ats It
e a Responsibility accounting, however, will not satisfy

.0 se SAW 6ob O ••0 • the accountants unless it is coupled with a relevant
to . x :I oe product costing system. Some portion of assignable

* oft 0 S 6000 .0940660o06• cost is fixed and not controllable. Heretofore, it has4410nD 0#0~q i 0 0 le ta 0e 0 to 6 11 0,40 O 040000O

S 1 " 0 606401 been assumed that these costs should be lumped and
alie 0 • l•oll absorbed uniformly. Even Project MAC has indicated

* . * . that it intends to continue this demonstratedly
• % J - 0, misleading practice in Multics by charging swap time

W soo60 6 s, V s k *46 o f to the user. It has been shown here that such a practice
oo s * &oo o o * , a 0 V06 has ramifications which are far reaching. One of our

a 0 : * .&• 4r o -l. prime projects during the coming year will be to
1 5 a *Goes5r . , •construct a more reasonable marriage of responsibility

,0 *to 00 0 0 6 ' PC accounting to product costing.

16 OL
so * & e • • A computation center contains parallels with a modern

oep' "0 so industrial corporation. While much work remains to be
6 00 or 0 s e 000ee,6 done, this paper has sketched out a preliminary

. t o o to 0 s definition of the product of a computation center, and
*...-...e.eaa..• , • • • • •has described an administrative mechanism for its



production and distribution. Many situations are unique
to the university environment. Chief among these are
the great flexibility required, and the relative
inadequacy of the accounting systems available.

Many academicians will not agree with our concept of
business-like management. The chief differences with
this point of view have been analyzed and our own
point of view has been defended. Nevertheless, like any
good business, we do not feel that wa will be organized
in the same manner three or four years hence.

In which direction should we change? How much should
we change?-the-e are very important questions.
We have presented in this paper a context in which these
questions can be meaningfully discussed. Hopefully
filling a gap in the literature on the management of
computer centers, we have nevertheless left many
areas untouched. It is hoped that they will emerge
in future papers by ourselves or others.
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Red

Um.m,.mm

White

White Pawn (Alice) to play, and win in eleven moves.

Page
1. Alice meets R.Q. 26
2. Alice through Q.'s 3d (by railway) 38 Page

to Q.'s 4th (Tweedledum and Tweedledee) 50 1. R.Q. to K.R.'s 4th 32
3. Alice meets W.Q. (with shawl) 70 2. W.Q. to Q.B.'s 4th (after shawl) 70
4. Alice to Q.'s 5th (shop, river, shop) 78 3. W.Q. to Q.B.'s 5th (becomes sheep) 78

18 5. Alice to Q.'s 6th (Humpty Dumpty) 86 4. W.Q. to K.B.'s 8th (leaves egg on shelf) 85
6. Alice to Q.'s 7th (forest) 103 5. W.Q. to Q.B.'s 8th (flying from R.Kt.) 112
7. W.Kt. takes R.Kt. 121 6. R.Kt. to K.'s 2nd (ch.) 121
8. Alice to Q.'s 8th (coronation) 138 7. W.Kt. to K.B.'s 5th 138
9. Alice becomes Queen 150 8. R.Q. to K.'s sq. (examination) 141

10. Alice castles (feast) 152 9. Queen's castle 150
11. Alice takes R.Q. and wins 160 10. W.Q. to Q.R. 6th (soup) 159



As the chess-problem, given on a previous page, has
puzzled some of my readers, it may be well to
explain that it is correctly worked out, so far as the
moves are concerned. The alternation of Red and
White is perhaps not so strictly observed as it might be,
and the "castling" of the three Queens is merely
a way of saying that they entered the palace: but the
"check" of the White King at move 6, the capture
of the Red Knight at move 7, and the final "check-
mate" of the Red King, will be found, by any one
who will take the trouble to set the pieces and play
the moves as directed, to be strictly in accordance
with the laws of the game. Christmas, 1896

Lewis Carrol
Through the Looking Glass

Dr. Allen Newell, Institute Professor hence be based on the initial knowledge that is available.

If these acts of discovery are well enough contained,
as in the assimilation of the parameters set for a
subroutine, we may not even think of them as discovery.
If, however, a variable number of successive acts of
discovery are required, each building on prior ones,
then discovery is a most appropriate term, and the
system may be termed a problem solver. It is clear that
if we want computers to become more and more

On the Representations of Problems sophisticated, we must come to understand such
processes.

Computer science is concerned with understanding the To date much of the knowledge that we have gained in
varieties o,' information processing. What processes developing programs that solve problems can be
will invert a matrix? Will parse a sentence? Will solve a expressed in the following model of problem solving. The
set of simultaneous equations? Will play a game of problem is presented to the problem solver in some
chess? In each case an information processing system external representation. The problem solver selects a
faces a task environment of which some things are prdblem space in which to work on the problem, and
known a priori, and other things are unknown. The translates the problem into this space. The elements of a

19 former provides the basis for the system's initial problem space consist of states of knowledge about
structure The unknown things must be discovered by the problem. One may think of these as data structures
the system during the course of processing, or, at least, in some kind of language in the problem solver's
enough of them to permit determination of the final memory. It must be possible to translate into this space
desired information. These acts of discovery, of course, both the initial situation-that is, the givens of the
must themselves be performed by the system, and problem-and the final situation-that is, the



knowledge that will indicate that the problem has been significant performance on the selected task; and the
solved. The problem space also contains a set of efficacy of various mechanisms of evaluation and
operators, which permit the problem solver to obtain selection. A more detailed description of this view with
new states of knowledge from old. Again, it must be suitable qualifications and an extensive listing of
possible to translate the transformations and heuristic mechanisms can be fou.,d in Newell and Ernst.6

manipulations that are permitted by the definition of Here we w;sh to follow a different thread of the
the problem into the operators of the space. argument.

Trying to solve a problem, once it is represented in a This view of problem solving suggests that one should
space, is a matter of search. The problem solver starts be mightily concerned about where the problem space
with what he knows, and applies the operators to gef comes from. More generally, it is a common notion that
more information, and then again to get still more hard problems are solved by finding new "viewpoints";
information. Thus, the scheme is just as sketched in i.e., new problem spaces. In human problem solving
the beginning: a succession of acts of discovery in an different people use different problem spaces,
attempt to arrive at the desired state of knowledge where especially in regard to the operators that are available.5

the solution is known. Intelligence enters into this Not surprisingly, those with objectively more powerful
search process by the evaluation of states of knowledge, spaces, do better. One can argue, for instance, that
the selection of operators to apply, and the decisions to the learning of Samuel's justly famous checker playing
start over when a dead end has been reached. The program 8 is inherently limited by the framework within
various rules used to attain selectivity are called which it plays; i.e., by its problem space. That no one
heuristics, and this model of problem solving is yet has proposed a better space does not remove the
consequently called heuristic search. concern.

There is no need for the problem solver to limit himself In this essay we will reflect a bit on the problem of
to a single problem space; it is solely a means to solve representations for problem solving. The topic has been
the problem. He may abandon one and try another. He a prominent one this spring at Carnegie. Owing to the
may switch back and forth between two; for example, a presence of Dr. Saul Amarel (of RCA's Research
simplified model and a more complete one. Similarly, Laboratories at Princeton) as a visiting faculty member,
the problem space is not the whole of the problem an advanced seminar was held to explore the topic. The
solver. Other processes exist for selecting the problem area is certainly not ripe yet for systematic treatment,
space, for translating to and from the problem space, but we can proceed piecemeal, making use of several
and for retrieving relevant information. recent pieces of work at Carnegie to illustrate various

aspects.
Without exce:ssive oversimplification, it may be asserted
that all the successes so far in problem solving Does representation make any difference? Consider the
programs have come from the investigator choosing a four games whose rules are briefly sketched below. Each
task, discovering a suitable probiem space, and is played by two players, 1 and 2, moving alternately

20 programming a computer to search for solutions in this with 1 starting. If neither player wins, the game is
problem space. The work on chess and checker declared a tie.
programs, on theorem proving, on puzzle solving, and
on a number of management science tasks all fit this
pattern. The essential discoveries are of two kinds: the
sufficiency of a problem space formulation for

~- I1
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- -Tic-tac-toe: Played on a square board, as shown. At
his turn, each player puts a characteristic mark in
any unmarked square, X for player 1, 0 for player 2.
The first player to mark an entire row. column or
diagonal wins.

Pool: WWWWFIJWLE8
Player 1: Player 2:

Number Scrabble: The nine digits, 1, 2, ... , 9, are
used to label a set of blocks, which constitute the
initial pool. At his turn, each player draws a block
from the pool. The first player able to make a set of
three blocks that sum to 15 is the winner.

Player 2 has
occupied this
road.

Jam*: Play takes place upon the network of roads, as
shown below. At his turn each player can occupy
a road (all of it) and thus jam (i.e., block) access to

Player 1 has the town on the road. The first player who succeeds
occupied this in isolating a town, in the sense of jamming all
road. roads leading to the town wins.

*Developed by J. A. Michon.



a b c d e f g h

rA1 x x

M2 x x x

M3 x x

M4 x x x

M5 xi x x x

M6 x x x

M7 x x

M8 x x x

M9 x - x -

Race: Played on a rectangular board, as shown
goal below. There are eight race horses in the starting

row, and the first player to get a horse to the goal
*row wins. The players select from the same set of

moves, but each move may be used only once. The
effects of these moves on the horse is shown in the
matrix. An X means the move affects the horse;

start a b c d e f g h a blank means it doesn't. If there is an X, one of the
three things occurs:

if the horse belongs to the moving player, then it is
advanced one toward the goal;

if the horse belongs to the opposing player, then it is
disqualified from the race;

if the horse doesn't belong to either player, then it
becomes part of the moving player's stable, and

22 is advanced one.



All four of these games are isomorphic to each other; it, our problem solver would generalize very differently
that is, they are all tic-tac-toe. Number Scrabble comes to other games. For instance, the natural generalizations
about because of the magic square. as given below, so from Tic-tac-toe are Qubic (three dimensional
that all sums of columns, rows and diagonals adds to Tic-tac-toe played in a 4x4x4 block) and Five-in-a-row,
fifteen. Jam is simply the projective dual, where lines are played on an infinite plane. But these are not at all
taken as points and vice versa. These are labeled on natural from the viewpoint of Number Scrabble. Here it
the magic square. Race comes about by abstracting the is natural to think of games defined by a set of

eight goal states, and relating the nine possible moves numerically labeled blocks, with the sum and number

directly to the effect on these goal states. of blocks to a win given. These, it appears, bear no
relationship to the in-a-row games on a plane board.g d e f h That there is a single point of inter-section depends on

- the special properties of magic squares. Similarly, the
a 2 9 4 game Race lends itself to generalizing the kinds of

moves possible-some moving two ahead, some backing
horses up, etc., as well as boards with obstacles in the

b 7 5 3 way. This suggests, perhaps, that the existence of good
representations may depend on very special properties-

c 6 1 8 e.g., on the "inter-section" of fundamentally different
classes of situations-and thus that any general theory
of them will be very hard to come by.

Does it make any difference which representation a
player uses? Can he play Jam just as well as Tic-tactoe? Representations for difficult combinatorial problems.

One thing is clear. Since the games are isomorphic, Imagine a long line of identical soldiers. At some

the game trees are the same: hence if the problem moment, call it t=O, the one at the right end, called the

solver plays by exhaustive tree search the only difference general, gives the signal to fire. All the soldiers

can be one in the speed of processing. Further, any rule, (including the general) are then to fire simultaneously.

either algorithm or heuristic, that can be expressed in However, each soldier can only communicate with the

one game must have its counterpart in the others. man to either side; so that, in fact, when the general

However, if we consider how easy it may be to discover gives the signal only he and the first soldier to his left

these heuristics, or to implement them, there can exist c3n know it. We assume that an act of communication

differences. Actually, an analysis by H. A. Simon9 shows takes one time unit. The problem, then, is to specify the

that the differences between these representations is communication strategy of the soldiers. This has come

at the level of perception and memory. More complex to be known as the Firing Squad Synchronization

problems than Tic-tac-toe sem to be required to show Prob!em, 4 and was posed originally by John Myhill.

the ways in which representations affect reasoning (as
opposed to perception). However, the reader may want The problem is really one in the design of abstract
to ponder these four versions (and other?) a bit. sequential machines. Each of the soldiers is a finite

23 state machine-that is, can be in one of k states, S1, S2,
An additional viewpoint is possible. Suppose we had a .... Sk at each instant of time, t=0,1,2 ..... at each
problem solver who, granting it somewhat greater time, t, the machine jumps to a new state, which can
sophistication than current game players, starts with depend on its own state, the state of the soldier to its
the rules of a game and builds up for itself a set of left and the state of the soldier to its right. A final
methods for play. Then, depending on the version given condition also holds: The complexity of the soldiers, as



measured by the number of states, k, is arbitrary, but elegant ones get names (e.g., the Four Color Problem,
fixed. However, the scheme must work for any length of the Traveling Salesman Problem), and accumulate a
line, n. In particular, n can be much larger than k. trail of researches in their behalf. It is, of course, too
Thus, the obvious strategy won't work. This is to have early to tell about the problem at hand. It has a certain
the soldiers "count off" (as they say in the military), appeal, and it has both a name and a small trail to date.
thus each labeling himself by 1, his position in the list.

* Then when the return signal comes back from the far To see what the problem has to do with representation,
end of the line, he knows to fire i time units later (when we must step behind the scenes to see how Balzer
the signal finally gets back to the general). This proceeded. First, some representation of the set of
solution takes only 2n-2 time units. This is certainly machines is needed. Various standard ones exist, for the
the minimum time possible, since one cannot solve the study of finite state machines is well advanced. A
problem without at least some effect traveling all the somewhat specialized variant is convenient for this
way down to the end and back. However as we said, it is problem. Let the states be indicated by capital letters,
impossible, because the soldiers, having only k states, A, ... , Z. The schema of the form
simply cannot count up to a number greater than k. XYZ-W

says that if a soldier is in state Y and if the man on his
Thus, the problem is a real one. The first solutions were left is in state X and the man on his right in state Z,
provided by John McCarthy and Marvin Minsky, then then the soldier will jump into state W. This form
both at M.I.T. (Once you know it has a solution it isn't (called a production) gives an elementary component of
too hard to find at least one.) Interest then centers on a machine, and a large collection of them completely
how long it takes to get synchronized. The easy solutions describes the behavior. For 8 states there will be
take essentially 3n. However, E. Goto, of Tokyo 8x8x8 (=512) productions, one for each possible
University, showed that a minimal time solution does situation that might arise. Note that for a given triple,
exist-that is, that the firing could take place in 2n-2 XYZ, there cannot be more than one production, or
time units. His solution, which was only sketched the behavior of the machine would riot be well specified.
apparently, took many thousands of states. Finally,
Robert Balzer 2, at Carnegie discovered a minimal time Now the design problem can be restated. Let the
solution with only 8 states,* and proved that this was quiescent state be Q, the initial state of the general be
indeed a solution for all n. However, he has not shown G, and the firing state be F. Introduce also an extra
that 8 states are necessary. state, X, to border the ends of the lines so that all

soldiers have a man on both sides. For a given length, n.
Two questions now arise. First, why should all these we can represent the conditions on the behavior of the
people want to worry about this abstract problem; and machine for minimal time performance by a graph
second, why should I want to describe it here in a (shown for n=5).
discussion of representation. As to the first, there is the
faith, common through all of mathematics, that the XQQQQGX XQQ - Q n=5
deep study of hard and elegant problems gives rise to t = 1 XQQQ X QQQ -- Q
techniques that eventually find their way to broader 2 XQQ X QQX- Q
application. There need be little concern over what 3 XQ X4 X X No F occurs inside
qualifies a problem for this status since a form of 5 X X

natural selection applies. Easy problems do not survive, 6 X X
24 except as exercises in textbooks. Likewise, inelegant 7 X X

problems, when not required for practical purposes, do 8 XFFFFFX
not survive for free men will not work on them. The Three productions are already given, since the quiescent

*Independently, J. Waksman provided a 15 state minimal state maintains itself in absence of an external signal.
time solution.10 Thus, we can fill in the Q's on the left for early t, as



they are already implied by these productions. We want.
then, a set of productions such that it contains the
three above, and the behavior of the resulting machine
fits the conditions for al! n correspondingto those above.

Posed this way we can easily translate the problem into
a problem space. The elements of this space are
partially specified machines-i.e., sets of productions.
The operators are the acts of specifying an additional I
production. The initial element contains just the three /
productions above; the final one contains enough /

/productions so no new ones are needed to define the

behavior of the machine. Considering the 8 state case, /
the full 512 is an upper bound to this, but we may get by
with many less. However, the number of machines we
might have to consider is very large, since each of the
512 productions can transform to any of the 8 states.

Our design problem now looks v( iuch like other
tasks, such as chess, theorem prov. ,g, and so on, that
have been tackled by problem solving programs. Balzer
constructed several different programs to try to
perform the design of such machines automatically,
making use of several heuristics to cut the search to Furthermore, Balzer described the states in terms of the
reasonable size. He was able by these means to show functions they performed. A state can be a carrier of
that no 4 state machine could solve the problem and to the left traveling signal; or a medium for the left
find several variants on the 8 state machine. However, traveling signal. It can be a residence state (once
that was the best he could do, and even with the 8 state established it never changes until F); or a middle state.
case he had to prime the system with much that For instance, one reasons as follows. The problem
appeared necessary to him from the one 8 state system with the F state is that one cannot jump into it until
he had discovered by hand. the last minute; what one needs is a state that can

cumulate-so that some men can get into it before others

But clearly Balzer himself had found a solution, and do, but such that not until all get into it will they all

manifestly not by working in the same problem space go to F. Let us call this state Z, the ready-to-fire state.

that the marhin.! dij. Therefore he had a different Then one can write productions:

representation that was more powerful. Thus, the
problem for us is to discover his alternative XZZ - F Fire when everybody is ready. These will
representation, and to see if it can be given to the ZZX - F be the only productions leading to F.
machine. We do know some things about it. Balzer, and
many other humans, think of the problem initially in Further, the simple design choice is to make Z also a

25 terms of signals propagating down the line-with residence state, so that when a man becomes a Z,
reflections, velocities, intersections, transparencies, etc. he will never change:
None of these terms is in the original formulation,
where the concepts are only states and transitions. xZy - Z for x, y not Z
Thus, a diagram, like that below, can be used to rapidly
convey the nature of the solution: (We have used x and y as variables for other states.)



But this means we can add a permanent restriction to the first place-is taken according to a scheme called
the set of conditions we are working toward, since the "natural deduction." This was developed by the
entire line at t= 2n-1 must consist of Z's. logician Fitch and others as a formalization of logic

that seemed to correspond to the way humans reasoned.

A whole collection of productions has been specified by Its flavor can be indicated by the following stylized
adopting a single decision. Hence, in a problem space argument, where I am interested inproving
whose operators are design decisions, search would be (p D q) D (-q D -p) (in words "p implies q implies
much more efficient. In fact, Balzer incorporated these that not-q implies not-p).
ideas, up to a point. Some functions are local; that is,
their properties can be given solely in terms of classes of To prove (p q) D (-q Z) - p) show that if
productions. It was possible to give the programs such suppose p q then -q -p follows.
local constraints, and it would select within these. By Hence, suppose p z q.
this means the search for alternative variants of 8 state
machines was shaped to look in the right part of the To prove -q = -p show that if suppose -q then
space. However, some of the most important constraints -p follows.
are non-local; most notably, the function of middle
states. This is a residence man that divides the region Hence, suppose -q.
between two boundaries in half, and forms a further To prove -p show that if suppose p then a
boundary that permits independent processing to contradiction follows.
occur simultaneously on both sides. No way was found
to specify these to the program operationally. Hence, suppose p.

To prove a contradiction prove q and also prove -q.
There the matter stands at the moment. We have an
example of a problem with one well defined space To prove q prove p and also prove p D q.
clearly inadequate for discovery, and the hint of another Prove p because p supposed.
more potent one. If we could formalize this latter,
perhaps we could get a program to solve the remainder Prove p =) q because p z) q supposed.
of the problem to determine the minimum of states
for the minimum time machine. The task is not just one
of inventing a good discovery space, however, since
one must verify that no possible machine exists (as As you can see from the style of argumentation, this
defined in the more detailed space) that can do the job. scheme is also called the method of suppositions.
The problem seems a nice challenge to those interested First, this task must be translated into a problem space.
in how one discovers new representations. A natural one, close both to the system as given by

logicians and to other attempts to construct problem
An example of three spaces. Saul Amarel has provided a spaces for thebrem proving, is to take the steps in the
very pretty case study of a task in which one is able to argument as the elements in the space and the rules
move through three successive representations. We of inference as the operators. These rules of inference
will only be able to sketch the matter, since considerable are the generalized versions of the arguments used
formal apparatus is necessary. The original monograph above; e.g., "to prove x D y, suppose x and prove that

26 should be consulted for details.' y follows." The initial step is simply "prove x," where

We start with the task of proving theorems in the x is some expression in the language, However, all later

propositional calculus, a form of symbolic logic that steps have various suppositions associated with them.

has received much attention from researchers trying Consequently the element of the space must give both

to build problem solving programs. The external suppositions and the expression to prove. Using =>

representation-how the task comes to be expressed in to separate the suppositions from the goal expression,



we can transcribe the argument as a tree:

I> (p D q) D (-q Z -p)

p q p-p
pDq, -q => -p

P D q, -q. p X (X stands for contradiction)

p Dq, -q, p > -

p D q. -q, p => q -q

pz q,-q,p => pDq p Dq,-q,p > p

p q p q p > P

Terminations of the tree occur when the goal expression
also appears as a supposition; we have indicated these
by rewriting the step with only the critical expression on
the supposition side. The proof is a tree because two
independent things sometimes require proof to
establish the desired result: in one case, q and -q

27 to get a contradiction; in the other, p and p z q to get q.

In this first problem space the operators (16 in all)
work backwards.



•.. => x D y (input) sequences of operations that will do this without

4 .... x => y (output) introducing new connectives. Our example shows this
prccess of elimination clearly. Sometimes the application

The three dots indicate that whatever other of several operators are necessary. The attempt to

suppositions already exist carry over. Thus, the arrow eliminate these features gives a sense of direction to
represents the direction of proof, not the relation the search for the proof. Even though the element is a
from input to output. long way from a member of the decidable set, one knows

pretty much what to do next-eliminate connectives.

Given appropriate representation inside the computer
of the steps and the operators, we can search out from The third observation is that if characteristic sequences

the given proof problem (the top one) trying to find a of elementary operators get applied, these may be
tree such that all branches can be terminated by a bundled up into single large operators that express the
state of type x= >x, which is the only terminating final outcome as a function of the initial input. These

(conclusive) state. At each stage several of the Amarel calls macromoves. They cut the spread of the

inference rules will apply, and so the tree of search search tree down tremendously, since they replace little
will branch. This first space closely resembles other branching networks with long linear sequences; or,
examples of heuristic search, and is a natural first more precisely, with a single long leap. Again, in the
way to formalize natural deduction. logic task at hand such macromoves can be created

for each of the elimination tasks. Different macromoves

The second space rests upon four observations, all of exist for each type of connective, and whether it

which are of quite general applicability, although they occurs on the supposition or the goal side of the
find particular, and successful, solutions in the problem element. Each macromove eliminates one occurrence

at hand. First, one would like to find a subclass of of a connective.
elements in the problem space where the problem could
be decided by simple means. This class should have The fourth and final observation is that irrelevant detail

some simple characterization so that the search can may be possible. In the logic task this is again the case,
home in on it. In the present case a good candidate is and one can eliminate logically redundant expressions
the class of elements that only have atomic expressions; from the supposition. As an extreme case, if two
i.e., either x or -x, where x is a letter. Then the theorem suppositions were identical-e.g., xD y, x Dy= >z-one
is proved if either the goal expression occurs as a could be dropped. This would avoid the needless

supposition, or if some letter and its negative occur elimination of its connectives, one by one,

as suppositions; otherwise, the theorem is not valid, by the macromovEs.
Thus, the goal is to get elements of this form, from
which the decision will follow immediately. Put all these features together and you get Amarel's

second problem space. The elements are those elements

The second observation is that one would like some of the first space that have no redundant expressions;

recognizable set of features that distinguish a given the operators are the macromoves that eliminate

element from being an element of the decidable class, connectives. The search is now an inexorable downhill

and which can be eliminated one by one so that slide toward a decision. However, questions of efficiency
inexorably the initial problem can be transformed into still remain, since the order in which operators are

28 a member of the decidable class. In general, of course, applied affects how soon a validation or refutation

no such set of features need exist. However, in logic will show up. This problem space is much more efficient

the connectives, for example, provide such a set. than the original. It is closely related to the formulation

The occurrence of any connective indicates a compound that Wang' used for his theorem prover for the
expression which needs to be broken into its atomic propositional calculus. Here, however, we see this

constituents. Furthermore, there always exist problem space in relation 'o the more primitive



one from which it was derived.

Currently, the third space is best exhibited rather
than described. We show below the proof of our
example theorem in this third representation.

(p zq) Z) (-q ) - p)

P q -q -P

P

c

It is a connected graph; with each node representing
an expression, as shown alongside. There are two
kinds of nodes: source nodes (* and .), which
correspond to suppositions or deduced formulas and
destination modes (0), which correspond to goals.
The condition for a proof is a graph all of whose
destination nodes are contained in closed circuits,
where the direction of the arrow counts. There are
three such circuits in the example, associated with the
links labeled a, b, and c. Each of these corresponds to

29 one of the terminating steps in the original tree. The
placing of these links "closed an argument" to use
Amarel's descriptive phrase. Thus, the task of proving
the example theorem can be viewed as the making of
three arguments, corresponding to the three circuits.



A graph-it could be a single node or a fully We called these operators "elementary," because the
connected proof graph-is the element of the third graphical representation permits the goal of proof
space; it is grown from the initial element, which is construction to be rephrased as one of closing circuits.
just the single destination node at the top, according Amarel has written a set of procedures that prescribe
to a set of elementary operators, which permits the how to apply these elementary operators so as to
graph to be augmented. These are related in certain construct circuits. These procedures, which are the real
simple ways to the operators of the first and of the operators of the third space. take into account the
second spaces. We reproduce the first steps below, structure of the total graph to not only close circuits

that can be immediately closed, but to prepare the way
for the circuits that must eventually exist when the
graph is full grown. These can be foreseen from the

( (pZq)D(-qD-p) 1 existing destination nodes, which one knows must
Se eventually lie in circuits.

Thereare numerous features of this third space that
have not been fully explored yet. The directed line

(p q)D(-PD -P) Step 2 segments are like flows, but flows of what? information?
dependency? Notice also that the top part of the final
graph closely corresponds to the tree representation of
the expression to be proven. Is this the harbinger of yet
another transformation of the problem which starts with

p q -q D -p a structural description of the expression that can be
written down immediately? Although it is possible to
describe in some detail the correspondence of features
of this third space, it is not yet possible to describe its
genesis from a set of general considerations that could

(p~jq) 1)(-PD-p) Step 3 be applied to the second space to yield the third space
as an output. Finally, humans find the third
representation effective because of its spatial
characteristics-they can detect various global
properties of the whole graph "at a glance."

p - P - Amarel's operators capture some of these clues,

but by no means all.

Many tasks, one representation. So far we have taken
the viewpoint of a given task and how it can be
represented in a suitable problem space. From the other
direction, the question becomes how many tasks can be
effectively represented by a given problem space. This

30 latter is one way of posing the problem of generality;
of how to get a single problem solver to solve many
problems. For if the number of problems is very large,
while the resources and preparation of the problem
solver is limited, surely the same resources must
be used over and over again.



Some research by George Ernst 3, just completed this formulated and coded in a way that makes them
year, helps to formulate this viewpoint more clearly, independent of the particular task being worked.
Ernst worked with a problem solving program called
GPS, which has been in existence for several years7. If one were to retreat to the two basic demands (first
Although the program has had pretensions of generality, and third), it would be easy to build a general problem
being organized with a clear separation between problem solver. It wouldn't be very good though. It one were to
solving processes and task environment processes, it add many additional demands, it might not be possible
had only been used on three different tasks when Ernst to find any way to get the information into the problem
took over. The program is a heuristic search program. space, such that uniform processes could extract it.
It builds goals to try to solve problems in a space Holding the demands fixed implied that, as Ernst
consisting of situations and operators that work on considered different tasks (eleven in all, by the time
these situations. its specialty (if it can be called that) he was through), he had to extend and augment the
is the use of means.ends analysis as the main search internal processes of GPS in order to meet all these
technique. This involves characterizing the difference demands. These additions did not increase GPS's
between the current situation and the one desired, problem solving power, but only maintained it in
and using this characterization to select the operator the face of increased generality.
to apply next. In addition GPS can set up subgoals
other than the main one. These come mostly from the Let me give an example or two. In getting GPS to
desire to apply a given operator when the conditions integrate symbolically, that is, to get from
for application are not fulfilled in the current situation. tet 2 dt et2

ISed to 2
For GPS to work on a task it is necessary not only to
build a correspondence between the elements of the it was not possible in the initial GPS to express the
externally given task and the operators and objects of final goal. One natural expression is, to "Get an
the formal problem space in which GPS works, but also expression that contains no more integrals to be
to make it possible to perform all of GPS's problem performed"; that is, one in which "i'" does not
solving methods. One can list these demands that appear. But the original GPS only permitted definite
GPS makes; there are seven of them: expressions (such as those above), and these are not

sufficiently general. One immediately thinks of simply

Object comparison adding a program test for this final condition.
Object difference Unfortunately, although this satisfies object comparison,
Operator application it does not satisfy object difference. Thus, Ernst had to
Operator difference
Desirability selection develop an expanded capability for expressing
Feasibility selection objects by descriptions, such that GPS could
Canonization still obtain differences.

The first and third are essential to any problem space: As a second example, the initial GPS permitted only
object comparison to detect when the problem is solved; operators that could be expressed as the transform of
operator application to get new objects. The others are an input form to an output form. Such transformations
peculiar to GPS's methods. The two difference are common in mathematical calculi:

31 demands relate to characterizing difficulties. The two
selection demands obtain operators. The demand for A2 - B2= >(A-B) . (A+ B) algebra
canonization implies the ability to introduce and
maintain a single name for common objects. Some of I Fdx + JGdx= > I(F+G)dx integration
GPS's activities do not show up on this list, such as P .)Q >-PvQ logic
goal building and interpreting. These are already

ft-=z



However, form operators are an awkward way to express can select out the desirable subvariant. In adding move
many tasks, especially those that involve moving operators to the repertoire of GPS, Ernst had to invent
objects around. For instance, consider the missionaries ways to specify these variables to select the desirable
and cannibals problem. The situations consist of three operators, as well as provide processes simply
missionaries, three cannibals, and a boat, distributed to apply the operator.
in various combinations on the banks of a river.
Initially they are all on one side; it is desired to get This essay is not a place to cover all the modifications
them all to the other. A natural way to express made; the original study can be consulted. From our
the operators* is viewpoint this work provides a step in understanding

what is required of a representation that it serve
The boat holds one or two of the missionaries or for many tasks.
cannibals (all of whom can row), and may travel
across the river from either bank. Four examples have been given, each in the nature of

Somewhat more formally: a case study, each somewhat fragmented. Some have
Let x (0,1,21 attempted to provoke thought in the reader. Some have
Let y L,1,2) taken studies aimed in other directions and bent them

to our purpose. Several places, where precision and

Move x missionaries, y cannibals and the boat from technical detail were appropriate, have remained
one side to the opposite side, if 1<x+y<2. superficial. Still, the aim has been to pose a hitherto ill

defined problem, and not to settle it. How one
(It is implicit in "move" that the objects moved
must exist on the side from which the move is made.) represents problems so that preconceived techniques-

and that is all that the problem solver can have at

To permit GPS to understand a language of the start-can work on them is of major importance
move.operators, several demands had to be met. in computer science.
Not only must GPS be able to apply such operators,
which is the obvious requirement, but it must be able
to describe inabilities to apply operators in terms of a
difference (operator difference). In the initial GPS,
where operators were composed of pairs of objects, this
demand was met by the same process that provided
object differences. The new language required a new
process. In addition, both desirability selection and
feasibility selection required new processes. In the
initial GPS there was an explicit table of connections
which tied differences to the operators that were
relevant to their reduction (desirability selection). But in
the move operators variants of a set of operators may
be expressed by variables inserted in a single
expression. In the missionaries and cannibals example
there is only a single operator, with variables for the
number of missionaries, the number of cannibals and
the direction of travel. Thus, no table of connections

*We ignore in this discussion the constraint that there
shall never be more cannibals than missionaries on either
bank, to keep the missionaries safe. It can be
incorporated either in the operator or as a separate test.



References 1. Amarel, S., "An Approach to Heuristic Problem
Solving and Theoret-. Proving in the Propositional
Calculus," R.C.A. Laboratories and Carnegie insti-
tute of Technology, (1966).

2. Balzer, R., "Studies in the Firing Squad Synchroni-
zation Problems," Unpublished Ph.D. thesis, Car-
negie !nstitute of Technology, (1966).

3. Ernst, G. and A. Newell, "GPS and Generality,"
Carneige Institute of Technology, (1966).

4. Moore, E. H. (ed.) "Sequential Machines: Selected
Papers," Addison Wesley, (1964).

5. Newell, A., "The Study of Human Problem Solving
Protocols," Carnegie Institute of Technology,
(1966).

6. Newell, A. and G. Ernst, "The Search for Generality,"
in W. Kalenich (ed.) Proceedings of IFIP Congress
65, Spartan, 1, 17-24 (1965).

7. Newell, A., J. C. Shaw and H. A. Simon, "A Report
on a General Problem Solver," Information Process-
ing, UNESCO, Paris, (1959).

8. Samuel, A., "Machine Learning Using the Game of
Checkers," IBM Journal of Research and Develop-
ment, 3, 211-229 (1959).

9. Simon, H. A., "Representations in Tic-Tac-Toe,"
C.I.P. Working Paper t90, Carnegie Institute of
Technology, (1966).

10. Waksman, A., "An Optimum Solution to the Firing
33 Squad Synchronization Problem," Information and

Control, 9, 1, 66-78 (1966).

11. Wang, H., "Toward Mechanical Mathematics," IBM
Journal of Research and Development, 4, 1, 2-22
(1960).



N,~ J-

-. VI

W e c a o l y s e a s h r t d i t a c e a h a d b tIe X
can ee lent th re t at eed to e d ne. * 4b

~~it

A. M.Turin

"Can achies Tink?

.oy



Dr. A. J. Perils, Head. Department of Computer Science

benefitted us in computing. I think, however, that only
one has had an effect like Turing's: the formal
mechanism called ALGOL. Many will immediately

The Synthesis of Algorithmic Systems' disagree, pointing out that too few of us have
uJnderstood it or used it. While such has, unhappily,
been the case, it is not the point. The impulse given by
ALGOL to the development of research in computer
science is relevant while the number of adherents is not.
ALGOL has mobilized our thoughts and has provided
us a base for our arguments.

On what does and will the fame of Turing rest? That he I have long puzzled over why ALGOL has been such a
proved a theorem showing that for a gene:al computing useful model in our field. Perhaps some of the reasons
device-later dubbed a "Turing machine"-there are (a) its international sponsorship, (b) the clarity
existed functions which it could not compute? I doubt of description in print of its syntax, (c) the natual way
it. More likely it rests on the model he invented and it combines important programmatic features of
employed: his formal mechanism. This model has assembly and sub-routine programm:ng, (d) it is
captured the imagination and mobilized the thoughts of naturally decomposable so that one may suggest and
a generation of scientists. It has provided a base for define rather extensive modifications to parts of the
arguments leading to theories. His model has proved language without destroying its impressive harmony of
so useful that its generated activity has been distributed structure and notation, (There is an appreciated
not only in mathematics, but through several substance to the phrase "ALGOL-like" which is often
technologies as well. The arguments employed have used in arguments about programming. languages, and
not always been formal, and the consequent creations computation. ALGOL appears to be a durable model,
not all abstract. Indeed a most fruitful consequence of and even flourishes under surgery-be it explorative,
the Turing machine has been with the creation, study, plastic, or amputative), and (e) it is tantalizingly
and computation of functions which are computable, inappropriate for many tasks we wish to program.
i.e., in computer programming. This is not surprising
since computers can compute so much more than Of one thing I am sure, ALGOL does not owe its magic
we yet know how to specify. to its process of birth-by committee. Thus, we should

not be disappointed when eggs, similarly fertilized,
I am sure that all here will agree that this model has hatch duller models. These latter, while illuminating
been enormously valuab!e. History will forgive me for impressive improvements over ALGOL, bring on only a
not devoting any attention in this lecture to the effect yawn from our collective imaginations. These may be
which Turing had on the development of the general improvements over ALGOL, but they are not
purpose digital computer, which has further successors as models.
accelerated our involvement with the theory
and practice of computation. Naturally we should and do put to good use the

improvements they offer to rectify the weaknesses of

Since the appearance of Turing's model there have, ALGOL. And we should also ponder why they fail to
35 of course, been others which have concerned and stimulate our creative energies. Why, we should ask,

will computer science research, even computer practice,
IThis essay was delivered at the 21st National worm, but not leap, forward under their influence?
Conference of the Association for Computing Machinery I do not pretend to know the whole answer, but I am sure
as the first Turing Lecture. It is also reprinted that an important part of their dullness comes from
in the Proceedings of that Conference. focusing attention on the wrong weaknesses of ALGOL.
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We know that we design a language to simplify the assignment, and combinational. Any other data
expression of an unbounded number of algorithms structure is considered to be non-primitive and must
created by an important class of problems. The design be represented in terms of primitive ones. The inherent
should be performed only when the algorithms for this organization in the non-primitive structures is explicitly
class imposes, or are likely to impose after some provided for by operations over the primitive data,
cultivation, considerable traffic on computers as well as e.g., the relationship between the real and imaginary
ccnsiderable composition time by programmers using parts of a complex number by real arithmetic. The
existing languages. The language, then, must reduce "sufficient" set of operations for these non-primitive
the cost of a set of transactions to pay its cost of data structures are organized as procedures.
design, maintenance, and improvement.

Successor languages come into being from a variety
of causes: (a) the correction of an error or omission !i In W " I !
or superfluity in a given language exposes a natural ' p ' IS : .
redesign which yields a superior language; (b) the 'o

correction of an error or omission or superfluity in a 4 ' -, r '.,
given language requires a redesign to produce a useful l I - " . ' F-,. I ....
language; and (c) from any two existing languages a i: t 11-

third can usually be created which (i) contains the -V4 .l-.111,0, MR

facilities of both in an integrated form, and (ii) requires . . "" .".
grammar and evaluation rules less complicated than "i;. "-": ° '. " .: .....'" - " --. .. .....

the collective grammar and evaluation rules of both. ' VA -4 -

With the above in mind, where might one commence in
synthesizing a successor model which will not only
improve the commerce with machines but will focus a
our attention on important problems within computation
itself? I believe the natural starting point must be the
organization and classifying of data. It is, to say the
least, difficult to create an algorithm without knowing
the nature of its data. When we attempt to represent an
algorithm in a programming language, we must know
the representation of the algorithm's data in that This process of extension cannot be faulted. Every
language before we can hope to do a useful computation. programming language must permit its facile use for

ultimately it is always required. However, if this
Since our successor is to be a general programming process of extension is too extensively used algorithms
language, it should possess general data structures. often fail to exhibit a clarity of structure which they
Depending on how you look at it this is neither as hard reaily possess. Even worse, they tend to execute slower
nor as edsy as you might think. How should this than necessary. The former weakness arises because
possession be arranged? Let us see what has been done the language was defined the wrong way fcr the

36 in the languages we already have. There the approach algorithm, while the latter is because the language
has been to: (a) define into the language a few forces over.organization in the data and requires
"primitive" data struciures, e.g., integers, reals, administration during execution that could have been
arrays (homogeneous in type), lists, strings, and files; done once prior to execution of the algorithm. In both
and (b) on these structures provide a "sufficient" set of cases, variables have been bound at the wrong time
operations, e.g.. arithmetic, logical, extractive, by the syntax and the evaluation rules.



I think that all of us are aware that our languages access, (b) the frequency of structure changes in which
have not had enough data types. Certainly, in our given data is embedded, e.g., appending to a file new
successor model we should not attempt to remedy this record structures or bordering arrays, (c) the cost of
shortcoming by adding a few more, e.g., a limited unnecessary bulk in ccmputer storage requirements,
number of new types and a general catch-all structure. (d) the cost of unnecessary time in accessing data,
Our experience with the definition of functions should and (e) the importance of an algorithmic representation
have told us what to do: not to concentrate on a capable of orderly growth so that clarity of structure
complete set of defined functions at the level of general always exists. These choices, goodness knows, are
use, but to provide within the language the structures difficult for a programmer to make. They are certainly
and control from which the efficient definition and use of impossible to make at the design level.
functions within programs would follow. Consequently,
we should focus our attention in our successor model Data structures cannot be created out of thin air.
on providing the means for defining data structures. Indeed the method we customarily employ is the use
But this is not of itself enough. The "sufficient" set of a background machine with fixed, primitive data
of accompanying operations, the contexts in which structures. These structures are those identified with
they occur, and their evaluation rules must also then be real computers, though the background machine might
given within the program for which the data be more abstract as far as the defining of data

structures are specified. structures are concerned. Once the background machine
is chosen, additional structures as required by our

We might list some of the capabilities that must be definitions, must be represented as data, i.e., as a
provided for data structures: name or pointer to 3 structure. Not all pointers reference

a the same kind of structure. Since segments of a
structure definition. program are themselves structures, pointers such as
b "procedure identifier contents of (x)" establish a
assignment of a structure to an identifier, i.e., class of variables whose values are procedure names.
giving the identifier information cells.
c
rules for naming the parts, given the structure. Truly, the flexibility of a language is measured by that
d which programmers may be permitted to vary, either in
assignment of values to the cells attached to
an identifier. composition or in execution. The systematic

e development of variability in language is a central
rules for referencing the identifier's attached cells. problem in programming, and, hence, in the design of
f our successor. Always our experience presents us with
rules of combination, copy, and erasure both of special cases from which we establish the definition
structure and cell contents. of new variables. Each new experience focuses our

These capabilities are certainly now provided in limited attention on the need for more generality. Time sharing

form in most languages, but usually in too fixed a way is one of our new experiences that is likely to become

within their syntax and evaluation rules. a habit. Time sharing focuses our attention on the
management of our systems and the management by

We know that the designers of a language cannot fix programmers of their texts before, during, and after
how much information will reside in structure and how execution. Interaction with program will become

37 much in the data carried within a structure. Each increasingly flexible, and our successor must not make
program must be permitted its natural choice to this difficult to achieve. The vision we have of
achieve a desired balance between time and storage. conversational programming takes in much more than
We know there is no single way to represent arrays or rapid turn around time and conveniant debugging aids.
list structures or strings or files or combinations of our most interesting programs are never wrong and
them. The choice depends on (a) the frequency of never final. As programmers we must isolate that which



is new with conversational programming before we can parameters are initialized as procedure identifiers are.
hope to provide an appropriate language model for it. and they may even be initialized as to value. However
I contend that what is new is the requirement to make different calls establish different initializations of the
variable in our languages what we previously had taken formal parameter identifiers but not different
as fixed. I do not refer to new data classes now, but to initialization patterns of the values.
variables whose values are programs or parts of
programs, syntax or parts of syntax, and The choice permitted in ALGOL in the binding of form
regimes of control. and value to identifiers has been considered to be

adequate. However if we look at the ooerations of
Most of our attention is now paid to the development assignment of form, evaluation of form, and initialization
of systems f- - managing files which improves the as important functions to be rationally specified in a
administration of the over-all system. Relatively little language, we might find ALGOL to be limited and even
is focused on improving the management of a capricious in its available choices. We should expect the
computation. Whereas the former can be done outside successor to be far less arbitrary and limited.
the language in which we write our programs, for
the latter we must improve our control over variability Let me give a trivial example. In the for statement the
within the programming language we use to solve use of a construct like value E, where E is an expression,
our problems. as a step element would signal the initialization of the

expression E. value is a kind of operator that controls
In the processing of a program text an occurrence of a the binding of value to a form. There is a natural scope
segment of texts may appear in the text once but be attached to each application of the operator.
executed more than once. This raises the need to
identify both constancy and variability. We generally I have mentioned that procedure identifiers are
take that which has the form of being variable and initialized through declaration. Then the attachment of
make it constant by a process of initialization, and we procedure to identifier can be changed by assignment.
often permit this process itself to be subject to I have already mentioned how this can be done by
replication. This process of initialization is a means of pointers. There are of course other ways.
fundamental one and our successor must have a The simplest is not to change the identifier at all, but
methodical way of treating it. rather a selection index that picks a procedure out of a

set. The initialization now defines an array 6f forms,
Let us consider some instances of initialization and e.g., procedure array P[l:k] (f1,f2 ,. .. J .); .... begin
variability in ALGOL. (a) Entry to a block. On entry to a .... end;. ... ; begin .... end; The call P[i] (a,, a2,
block declarations make initializations, but only about .. a, ) would select the ith procedure body for
some properties of identifiers. Thus, integer x initialize execution. Or one could define a procedure switch
the property of being an integer but it is not possible P:=A,B,C and procedure designational expressions so
to initialize the value of x as something that will not that the above call would select the ith procedure
change during the scope of the block. The declaration designational expression for execution. The above
procedure P ( ); ; emphatically initializes the approaches are too static for some applications and
identifier P but it is not possible to change it in the they lack an important property of assignment: the
block. Array A [ 1:n, 1:n] is assigned an initial ability to determine when an assigned form is no longer

38 structure. It is not possible to initialize the values of its accessible so that its storage may be otherwise used.
cells, or to vary the structure attached to the identifier A. A possible application for such procedures, i.e., ones
(b) for statement. The expressions, which I will call that are dynamically assigned, is as generattrs.
the step and until elements cannot be initialized. (c) the Suppose we have a procedure for computing
procedure declaration is an initialization of the
procedure identifier. On a procedure call, its formal

-- ---.---..--- ~ . ______



N
(a) ", Ck(N)Xkas an approximation to some function causes the value of the arithmetic expression assigned

k=O to t, e.g., by input, to be added to that of x and the result
assigned as the value of s. We observe that t may have

(b) f(x)= . C Xk, been entered and stored as a form. The operation +
k=O can then only be accomplished after a suitable transfer

when the integer N is specified. Now once having found function shall have been applied. The fact that a partial
the C, (N) we are merely interested in evaluating (a) for translation of the expression is all that can be done
different values of x. We might then wish to define a at the classical "translate time" should not deter us.
procedure which prepares (a) trom (b). This procedure, It is time that we began to face the problems of partial

on its initial execution, assigns, either to itself, orto translation in a systematic way. The natural pieces

some other identifier, the procedure which computes of text which can be variable are those identified by the
(a). Subsequent calls on that identifier, will only yield syntactic units of the language.

this created computation. Such dynamic assignment
raises a number of attractive possibilities:

a It is somewhat more difficult to arrange for
some of the storage for the program can be released unpremeditated variation of programs. Here the major
as a cosequence of the second assignment. problems are the identification of the text to be varied
b
data storage can be assigned as the own of the in the original text and how to find its correspondent
procedure identifier whose declaration or under the translation process in the text actually being
definition is created. evaluated. It is easy to say: execute the original text
c interpretively. But it is through intermediate solutions
The initial call can modify the resultant definition,
e.g., call by name or call by value of a formal lying between translation and interpretation that the
parameter in the initial call will affect the mind satisfactory balance of costs is to be found. I should like
of definition obtained, to express a point of view in the next section which

may shed some light on achieving this balance as each
It is easy to see that the point I am getting at is the program requires it.
necessity of attaching a uniform approach to
initialization and the variation of form and value attached Even though list structures and recursive control will
to identifiers. This is a requirement of the computation not play a central role in our successor language, it will
process. As such our successor language must possess owe a great deal to LISP. This language induces
a general way of commanding the actions of humorous arguments among programmers, often being
initialization and variation for its classes of identifiers. damned and praised for the same feature. I should only

One of the actions we wish to perform in conversational like to point out here that its description consciously
programming is the systematic, or controlled, reveals the proper components of language definition
modification of values of data and text, as distinguished with more clarity than any language I know. The
from the unsystematic modification which occurs in description of LISP includes not only its syntax, but the
debugging. The performance of such actions clearly representation of its syntax as a data structure of the
implies that certain pieces of a text are understood to language, and the representation of the environment
be variable. Again we accomplish this by declaration, by data structure also as a data structure of the'language.
initialization, and by assignment. Thus we may write, Actually the description hedges somewhat on the latter39 in a block heading, the declarations description, but not in any fundamental way. From theabove descriptions it becomes possible to give a

real x,s; description of the evaluation process as a LISP program
arithmetic expression t,u; using a few primitive functions. While this completeness

of description is possible with other languages, it is not
In the accompanying text the occurrence of s := x + t; generally thought of as part of their defining description.



An examination of ALGOL shows that its data structures internal syntax for v/3 and the value of t. It should be
are not appropriate for representing ALGOL texts, at pointed out that t behaves very much like an ALGOL
least not in a way appropriate for descriptions of the formal parameter. However the control over assignment
language's evaluation scheme. The same remark may be is less regimented. I think this merely points out that
made about its inappropriateness for describing the formal-actual assignments are independent of the closed
environmental data structure of ALGOL programs. I sub-routine concept and that they have been united
regard it as critica! that our successor language achieve in the procedure construct as a way of specifying the
the balance of possessing the data structures scope of an initialization.
appropriate to representing syntax and environment so
that the evaluation process can be clearly stated in the In the case of unpremeditated change a knowledge of
language. Why is it so important to give such a the internal syntax structure makes possible the least
description? Is it merely to attach to the language the amount of retranslation and alteration of the evaluation
elegant property of "closure" so that bootstrapping can rules when text is varied. Since one has to examine
be organized? Hardly. It is the key to the systematic and construct the data structures and evaluation rules
construction of programming systems capable of entirely in some language, it seems reasonable that it be
conversational computing. in the source language itself. One may define as the

A programming language has a syntax and a set of target of translation an internal syntax whose character

evaluation rules. They are connected through the strings are a sub-set of those permitted in the source
representation of programs as data LO which the language. Such a syntax, if chosen to be close to

rereenato of programs asde data the wic evlaedb ulswicr
evaluation rules apply. This data structure is the internal machine code, can then be evaluated by rules which are
or evaluation directed syntax of the language. We very much like those of a machine.
compose programs in the external syntax which, for the While I have spoken glibly about variability attached to
purposes of human communication, we fix. The internal
syntax is generally assumed to be so translator and

machine dependent that it is almost never described about the variability of control. We do not really have
in the literature. Usually there is a translation process a way of describing confrol, so we cannot declare its
win tes teatr Uuay eternisa transiornal p s regimes. We should expect our successor to have the
which takes text from an external to an internal syntax kinds of control that ALGOL has-and more. Parallel

representation. Actually the variation in the internal

description is more fundamentally associated with the operation is one kind of control about which a good deal

evaluation rules than the machine on which it is to be of study is being done. Another one, just beginning to
executed. The choice of evaluation rules depends in appear in languages, is the distributed control which Iexected Th choce f ealuaionruls deend in will call monitoring. Process A continuously monitors
a critical way on the binding time of the variables

of the language. process B so that when B attains a certain state
A intervenes to control the future activity of the process.
The control within A could be written when P then S;

This points out an approach to the organization of P is a predicate which is always, within some defining
evaluation useful in the case of texts which change. Since scope, under test. Whenever P is true, the computation
the internal data structure reflects the variability of under surveillance is interrupted and S is executed.
the text being processed, let the translation process We wish to mechanize this construct by testing P
choose the appropriate internal representation of the whenever an action has been performed which could

40 syntax, and a general evaluator select specific possibly make P true, but not otherwise. We must then,
evaluation rules on the basis of the syntax structure in defining the language, the environment, and the
chosen. Thus we must give clues in the external syntax evaluation rules, include the states which can be
which indicate the variable. For example, the occurrence monitored during execution. From these primitive states
of arithmeitc expression t; real u, v; and the statement others can be constructed by programming. Kr:owing
u := v/3*t; indicatss the possibility of a different these primitive states, arrangement for splicing in

- ~. -



testing at possible points can be done even before the which also focused on the important concepts, we do
specific predicates are defined within a program. We not hesitate to operate with more sophisticated
may then trouble-shoot our programs without disturbing machines anu data than he found necessary.
the programs themselves. Programmers should never be satisfied with languages

which permit them to program everything, but to
Within the confines of a single language an astonishing program nothing of interest easily. Our progress, then,
amount of variability is attainable. Still all experience is measured by the balance we achieve between
tells us that our changing needs will place increasing efficiency and generality. As the nature of our
pressure on the language itself to change. The precise involvement with computation changes-and it does-
nature of these changes cannot be anticipated by the appropriate description of language changes, our
designers since they are the consequence of programs emphasis shifts. I feel that our successor model will
yet to be written for problems not yet solved. Ironically show such a change. Computer Science is a restless
it is the most useful and successful languagLs that are infant and its progress depends as much on shifts
most subject to this pressure for change. Fortunately, in point of view as the orderly development of our
the early kind of variation to be expected is somewhat current concepts. None of the ideas presented here are
predictable. Thus, in scientific computing the new, they are just forgotten from time to time.
representation and arithmetic of numbers will vary, but
the nature of expressions will not change except I wish to thank the Association for the privilege of
through its operands and operators. The variation in delivering this first Turing Lecture. And what better way
syntax from these sources is quite easily taken care of. is there to end this lecture than to say that if Turing
In effect the syntax and evaluation rules of arithmetic were here today he would say things differently.
expression is left undefined in the language. Instead
syntax and evaluation rules are provided in the language
for programming the definition of arithmetic
expression, and to set the scope of such definitions.

The only real difficulty in this one-night stand language
definition game is the specification of the evaluation
rules. They must be given with care. For example, in
introducing this way the arithmetic of matrices, the
evaluation of matrix expressions should be careful of the
use of temporary storage and not perform unnecessary
iterations. A natural technique to employ in the use of
definitions is to start with a language X, consider the
definitions as enlarging the syntax to that of a
language X', and give the evaluation rules as a reduction
process which reduces any text in X' to an equivalent
one in X. It should be remarked that the variation of the
syntax requires a representation of the syntax,
preferably as a data structure of X itself.

41
Programming languages are built around the variable,
its operations, control, and data structures. Since these
are concepts common to all programming, general
language must focus on their orderly development.
While we owe great debt to Turing for his simple model,
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In the beginning was the word. I am the Alpha and
Omega. The growth of Lear. He grew old and mad.
There's growth for you.

Thomas Wolfe
Look Homeward, Angel

Herbert A. Simon, R. K. Mellon Professor of
Computer Sciences and Psychology central processor, and perhaps to share high-speed

memory as well.

Since present-day computers are typically built around
a large, single processor, users do not literally "share"
time, do not have simultaneous access to the processor.
Instead, the processor serves the demands of the
several users in turn, sharing its processing capacity
among them. With an appropriate balance of number of

Reflections on Time Sharing users to processing power, both users and computer
From a User's Point of View may be kept reasonably occupied. Central memory may

actually bu shared, if several user's jobs are held in
memory simultaneously. Alternatively, users may share
secondary memory. That is, the processor may "swap"
from secondary into central memory the program and

Ten years ago, programs were commonly debugged data of the user who is to receive the next slice of
(and sometimes also run) by a user who sat at the processing time. Often a time-sharing system provides a
computer console and interacted with it "on line"- combination of core-sharing and swapping to handle
queried the contents of particular memory addresses the collective memory requirements of its users.
and received an immediate answer, or stepped through
the program instruction by instruction. As computers Since time-sharing has generally been proposed as p
became biggpr and faster, manual operation from the means for on-line conversation between computer and
console became more and more wasteful of the central user, the design of time-sharing systems has usually
processor's time, for the processor was almost always aimed at the shortest possible turnaround time
idle while waiting for the slow response of the human compatible with reasonable economies of memory
operator. swapping. Design based on these considerations has

been useful for exploring the potentialities of time

The subsequent era of batch processing was distressful sharing, and the organizational problems that need to be
to programmers, because it did nct eliminate the solved in constructing time-sharing software.

43 man.computer imbalance, but simply reversed its
direction. Now the programmer had to wait for the As time-sharing systems become a larger part of the
response of the computer, and unless he could switch workaday world of the computer user, however, a
to another task while waiting, much of his time was idle broader and deeper design philosophy will be needed.
Thence arose the idea of keeping the programmer busy Such a design philosophy can be obtained by paying
by allowing a number of users to share the time of the closer attention to the diversity of purposes to which
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time-sharing and on-line techniques may be directed, kind of interaction that the Carnegie G-21 system.
and to the characterstics of the human component in for example, has provided.)
the time-sharing system (which is fundamentally and 4
essentially a man-machine system whose performance Is it correct to assume that the faster the turnaround,
depends on how effectively it employs the human the better for the human user? Not only does this
nerveware as well as the comptiter hardware). assumption ignore the last two considerations

mentioned-human swapping costs, and the bias toward
a conversational mode-but it is ambiguous with

How well do exist;ng general-purpose time-sharing respect to the concept of tur.naround. Does "fastest
scheduling algorithms take care of: (a) end-use turnaround" mean most rapid response to each
considerations or (b) the information processing individual inquiry (e.g., a one-line instruction), or does
characteristics of their human users? it mean most rapid completion, by the computer, of the
1 substantive job of interest to the human user (e.g.,
In these systems the unit of interaction i,; almost always inverting a matrix)?
taken to be a sequence that begins with a message
from the human component and ends with a response To answer questions like these, we must have a clearer
from the computer. Since, in a "conversation" between idea of what the user wants.
man and computer, there is symmetry between the tWo
components, why not, instead, take as the unit of To say that a user is "on line" says very little about the
interaction a sequence that begins with a message from requirements that must be met by the system if he is
the computer and ends with the response from the to use it effectively. Lacking a knowledge of the different
human? Quite different software design (as I shall try kinds of uses, their frequency and importance, the
to indicate below) might result from this changed designer of software must build a general-purpose
point of view. system. A price is paid for the flexibility that makes a

system suitable for a variety of purposes-it is always

Is either point of view, in fact, correct? Isn't the system less efficient for any single one of those purposes
really a closed feedback loop in which the human user than if it had been designed specifically for it. Of course
proposes tasks to the computer and the computer to the when flexibility is sacrificed for single-purpose
human? efficiency it almost always turns out in practice that the
2 purpose for which the system is designed is not the2 exact purpose for which it is needed. When we are
In current practice, the basic "time slice" is defined, eact purpfric ityis ne We we aagai asmmericllyin erm ofthe elaionbeteen desigr'ing a "public utility," we must be willing to pay
again asymmetrically, in terms of the relation between the price of flexibility.
the cost and frequency of swapping between hardware
memories. Would a different system design emerge To design a system as a flexible, multi-purpose facility,
if explicit attention were also paid to the costs of however, requires explicit attention to the range of uses
swapping in human memory? Isn't a major objective to which ;t is to be put. It will not do for the designer
of time-sharing to avoid the necessity of the human simply to put in the forefront of his attention one or two
switching in and out of context? of the possible uses, and to assume that if the system

serves those it will serve the others.
Most existing designs for time-sharing software are

44 heavily biased toward use of the system in a Even a cursory survey of existing time-sharing systems
conversational mode-ie., at rates of interaction shows that there are at least seven distinguishable
between human user and computer comparable to classes of on-line uses, and that different systems have
normal conversational rates. How would the design been designed with a variety of these uses in mind:
change if many or most users needed interaction on,
say, a ten minute or fifteen minute cycle? (This is the



1 but will assume that the system is so buffered that
Real-time acceptance of data and maintenance of the tasks calling for very high-frequency response will
dizplays, the former in such applications as missile look no different to the main system than
tracking and reduction of data from laboratory conversational-rate tasks.
experiments, the latter in design and teaching machine
applications (it is usually inefficient to mix microsecond Categories 2 and 3 include tasks where one would like
real-time demands of these kinds with a general conversational-rate response to messages from the
purpose system, if the real-time demands require human user. For these categories the currently-used
responses in times close to the basic swap time. design approaches seem to work reasonably well. The
Swapping costs will be exhorbitant unless there is a swap-time characteristics of the hardware determine
powerful interface to provide buffering and relax the the minimum "slice"-call it S-that can be used
time constraints on the central system); without incurring major swapping costs. (I shall have
2 something to say later about interactions between
Real-time operation at human conversational rates for swapping costs and the nature of the computing load.)
such applications as text-editing, idiot-error debugging, The characteristics of the human user-the normal
and answering simple inquiries (e.g., reservations rate of human speech-determine the desired terminai
inquiries); turnaround or cycle time-call it T. Then, the system
3 will accommodate at most U=T S simultaneous users
Desk calculator use, offering modest computational in the conversational mode, with turnaround not
power-not including solution of large linear exceeding T and slice not less than S. The nature of the
programming problems or partial differential equations scheduling algorithm may alter U slightly, but cannot
at conversational rates; change it fundamentally, for on the average T S users
4 can be given a slice of length S every T seconds.
Debugging beyond detecting obvious syntax errors;
5 This estimate of the capacity, U, assumes that the
Storage and retrievai of large amounts of information- central processor will typically be able to complete a
most business data processing applications; response to a user in S seconds or less of actual
6 processing time, an assumption that is seldom valid.
"Production", using substantial amounts of central Usually, the shortest slice that.is tolerable from the
processor time to provide substantive information standpoint of swapping efficiency, S, is much less than
to the user; the average slice R that is needed to service a request.
7 Under these (typical) conditions, R, not S, should govern
Evaluating "cases" with a model, by studying the the system design, since response at conversational
model's behavior under changes of parameters and speeds can only be maintained for U'--T R users,
subroutines. irrespective of the scheduling algorithm. In particular,

no improvement can be obtained in turnaround, and
The classification is not intended to be exhaustive, but there will be an actual loss in central processor efficiency
illustrative of the characteristics of various kinds of (due to increased swapping) if the slice is reduced
demands. In some cases, the categories overlap. In below R. The reduction will raise turnaround time, for
general, though not invariably, the early items on the list it will mean that some users will have to wait for more

45 demand less central processing than the later items; than one cycle for a response (i.e., at capacity, for
while the tolerable delay in response is greater in the more than the designed cycle time, T).
later than in the earlier.

For these reasons, the nunber of on-line users the
In my subsequent comments, I will have nothing further system can accommodate simultaneously at
to say about data acquisition and display maintenance, conversational rates is more or less independent of the



minimum tolerable slice, S (assuming this to be less If one person is much better informed on the topic of the
than R), bu! varies inversely with the average conversation than the other, the balance in computing
computing demand per interaction, R. No scheduling capacities can still be maintained if the former adopts
magic can relax this iron law. the role of informing the latter (by "lecturing" or by

answering questions). The inter-action can still go on
While in categories 2 and 3 we might conceivably at a conversational rate, although unless the controlling
stipulate some fixed R, and limit any single demand to participant (lecturer or questioner) receives and
that amount of computing, uses in the remaining reacts to feedback from the other, he is likely to swamp
categories can demand any amount of computing-up the capacity of the other's processor. The receiver
to hours. Of course, the system can set ati arbitrary may cease listening, or the person being questioned
upper limit; our phrase "can demand" means that the may no longer be able to give the answers in real
user needs that amount of computing to get an answer (conversational) time. ('Quick! What are the prime
to the question he is asking, and not simply to a factors of 3,628,800?'). Then the conversation is
question that has been artificially fragmented to fit the punctuated by silences, which serve as signals either
scheduling algorithm, to change its character or to terminate it.

In general, existing time-sharing scheduling systems In particular, if the questioner does not receive answers
solve the problem of lengthy requests by abdicating promptly, his own processor is idle much of the time,
responsibility for them. Sometimes, they define a time and he will likely say, "Why don't you run down the
slice, and guarantee to the user who limits his requests answer on that, and we'll talk again tomorrow," or,
to a small multiple of that time slice a response at "Send me a memo on it." On the other hand, the
conversational rates. Often, they do not even provide answers to questions may give the questicner so much
this guarantee, but allow the shortest response time food for thought that the long silences will be his. In
gradually to increase as the total demand on the system that case, the other person may say: "If you have
increases. The user demanding more central any questions, I'll be here tomorrow."
processing is regulated by impedimenta-the larger his
demand, the worse the service he can expect. Not all reactions to unbalanced conversations are

adaptive. If the silences are longer than normal, but the
Scheduling algorithms embodying these characteristics conversation rate remains about half, say, of the usual
have a certain aura of "fairness" about them; but it one, the person whose processing capacity is
may be question, ' whether they are adapted to the under-utilized may simply remain in the situation,
needs of users. Do they retain their plausibility when we slightly bored.
take a systems approach, instead of a local approach,
to the time allocation problem? To get a broader view, A more subtle disfunction occurs when one of the
let us step back and examine a little closer the nature participants processes informatien inefficiently because
of a conversation between a man and a computer-or, it is not presented to him at an appropriate rate or in
for that matter, between two men. an appropriate format. To take a very simple example,

suppose that A is adding numbers that are being read

In a casual conversation two humans alternate in to him by B. If B reads more slowly than A can add,
speaking a few sentences at a time, the joint rate usually A will likely Lay in the situation, but use his lurne

46 being less than one sentence every four seconds. When inefficiently. It would be far be' - if A coulC ,. off and

the two persons are approximately matched intellectually do another task while the nur 3re recorded, then

and are taking symmetric roles in the conversation, add them all at once.

the system is balanced. Each person has as much time
as the other to process the communications directed These possibilities of imbalance in man-man or
to him, and to construct his replies. man-machine conversation are not imaginary. There are
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other difficulties, he has no way of predicting exactly can learn to use such an interval efficiently with a
what those uses are. It is perhaps less unreasonable for little experience.) For a major change of context tc a
the designer to construct an algorithm that will allow new complex task, the swapping costs may be
the user to try to devise for himself a reasonably excessive unless several hours are free. This will, of
efficient mode of interaction with the computer for a course, be particularly true if the task has to be
wide variety of possible uses. performed in a different place.

One possible rule of thumb for the design is to require If these, conjectu,-es are at all correct, then a user might
neither the human nor the machine component of the be given the a!ternatives of (1) operating in a
system to respond at rates either above or very much conver;ational mode, (2) operating with a ten to
below their processing capacity. This condition is easier twenty minote turnaroL nd time, or (3) submitting tasks
satisfied for computer than user, provided the basic that will be processed 1n, say, a day. (For any system
time slice is not too short, since the former can always operating within its capacity, the maximum turnaround
use its "idle" time productively for computing time need not be much longer than a small multiple
"background" jobs. The linkage of human user with of the tms required to process the biggest job.) In any
machine should be "conversational" in the strict sense of these modes, he should be able to form firm
of the term only when the processing demands are at expectations as to when (at latest, and perhaps, also
the conversational level for both. Otherwise, an at soonest) a task will be finished.
alternative mode of intetraction should be employed.

It will not only be useless, but absolutely harmful, (1) to
A second possible design principle is that turnaround provide service that is slower than conversational, but
times are ultimately important only for "finished" jobs. gives faster than ten minute's turnaround, and
If a user wants the square root of two calculated to (2) service that is slower than ten to twenty minutes,
twenty places, he will usually be just as pleased to but of the order of magnitude of an hour. (If the precise
receive the whole answer after four seconds as to receive numbers given here are wrong, the general principle,
one digit each two-tenths of a second. Since a user in terms of our swapping analysis, is still right. With a
generally wants an answer, however, in order to ask little trouble, it should be possible to make reasonable
another question (if nothing else, to go on with his next estimates of the parameters.) It will be harmful, also,
piece of research), defining "finished" jobs is a to provide unpredictable service in any mode.
matter of some subtlety.

A scheduling system efficient in terms of processing

A third guide to the design is that the human, like the capacity, and meeting the specifications just outlined,
computer, has minimum swap times, which we can could be relatively simple-simpler than most existing
estimate roughly from everyday experience even if we time-sharing algorithms. It could be based on two
do not know their precise values. We have already time-slice parameters: Rc, the maximum processing
mentioned one time parameter of the human system- time a user will receive in a single response in the
in the conversational mode, he should receive response! conversational mode; and Rd, the maximum processing
within a couple of seconds. A second critical parameter time he can demand in a single response in the
is a little vaguer: how much time does it take to change ten-minute ("debugging") mode. There would usually
context to another task? As a rough guess, free time need to be an upper limit on processing time for all

48 in slices of less than ten minutes can generally not be other tasks (background), with provision for
used efficiently except on tasks closely connected exceptions with administrative approval.
with the one to which attention is paid. An interval of
ten minutes or more, particularly if the time when the The classification of a request can be made to depend
interruption will occur is predictable, can usually be on information from the user, about the particular
used fairly efficiently. (This probably means that humans subsystems the request calls upon, expected processing
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adjusted on the basis of experience. The basic constraint Lo * P 0*4008*000

on the system is of the form U1=T11'R1, which can now 0% 0604
be applied to the three modes separately. The



parameter T will be twenty seconds for the data store, this economy may not be available since each
conversational mode; and twenty minutes for the user may require a large amount of high-speed memory.
debugging mode. (These numbers are just proposed for A further elaboration of the design might achieve some
illustration; they include a complete cycle from one swapping economies by dividing the conversational
initiation by the user to the next, hence include the traffic into two streams, only one of which requires
user's response time as well as the processor's.) swapping. But our purpose here is to outline a design

viewpoint, not to elaborate details of design.
Next, the choice can be made between servicing a
large number of users simultaneously, with small Ri , Limiting the sorts of tasks that will be performed in
of a smaller number, with larger Ri (since UxR is a conversational mode will go a long way toward inducing
constant). At this point existing scheduling algorithms users to make a realistic choice of mode. Perhaps the
generally abdicate in refusing to limit the number of simplest way to enforce the restrictions is to transfer
simultaneous users. They usually ration time, as already automatically a program that exceeds the time slice for
suggested, by the degradation of T. The deterioration a mode to the next lower mode. Thus a user who
almost never affects different users equally, and indicated a desire for a response at conversational
sometimes does not even affect them predictably; speed, but who posed a task requiring a time slice
thereby, guaranteeing again that Justice is indeed longer than Re would have his incomplete job stored
blind, and stochastic as well. at the end of the queue for debugging tasks, and

would receive a m-..>age notifying him of this.

For most purposes, the number of users to be served
over a day's time must be considered as given for Since the time slice will vary inversely with the number
the scheduler. (The question of allocating the overall of simultaneous users the system is designed to handle,
capacity of the system among users cannot be if many users are to be accommodated each wil have
considered in this paper. It can be stated unequivocally, the experience of conversing with a machine of modest

however, that such allocation can never be accomplished computing power, so that he can only ask it relatively

in a satisfactory manner by any sort of scheduling simple questions in conversational mode, and must

algorithim-i.e., an algorithm determining when send it away, in debugging or background mode
be necessary, to find the answers to more difficult questions. If

particular tasks are processed.) It mayb feeruercreacomdaeahrcneraio,
because of capacity constraints, to limit use during fewer users are accommodated, the conversational

certain parts of the day to certain of the power of the computer will be larger for each.

three priority classes.
A simple numerical example will illustrate how the

Given the number of simultaneous users, U, in a class, system would operate. Let us assume that 500 users
i, and the time slice, T, for that class, the parameter are to be accommodated in conversational mode
R, is fixed, and determines, i.,. turn, how elaborate are (T-20 seconds), 60 in debugging mode (T=20
the responses that users may expect, at maximum, in minutes), and an indefinite number in background mode.
that mode of use. This principle may lead to an Let us assume, further, that a time slice of 4 ms is
important economy in designing the conversational reasonable for the sorts of editing, simple debugging,
mode, for it may be necessary to give the user access to querying, and desk calculator tasks that are to be
no more elaborate facilities than he can use within his handled conversationally. Then the conversational

50 time constraints. Hence, interruptions for conversational mode will absorb (500.4)/20 ms/sec of the processing
mode may require less complete and elaborate swapping time, that is, 100 milliseconds per second, or ten
than interruptions for the debugging and background percent of the total available. Similarly, if the debugging
modes. Since the former swaps will be by far the most mode is allowed a time slice of 10 seconds, it will
frequent, this may permit a large reduction in swapping absorb (60.10)/20 sec/min, or 500 milliseconds per
costs. In many uses, for example, searching a large second would remain for background. If background



tasks averaged two minutes in length, one could be typically taken in the past.
completed about every five minutes.

From the design standpoint, the critical derived
At the beginning of each second, for instance, the parameters of such a system are turnaround times that
processor would interrupt and swap out the job on will permit the human users to employ their time
which it was working, then execute all the tasks on the efficiently, and computer time slices that will allow
conversational queue, then all those on the debugging tasks of appropriate size to be assigned to the processor.
queue then return to its interrupted task. If a Regardless of the design philosophy, the ratio of
background task were finished duringthat second, turnaround time to processing time slice determines
another would be started. Since, on the assumptions, the number of users who can be accommodated
an average of 25 conversational tasks and a negligible simultaneously in particular mode by a given fraction
number of debugging and background tasks would of machine capacity. No scheduling system can
arrive each second, the number of interruptions per accommodate more users without shortening the time
second would average just slightly more than twenty-five, slices or allowing degradation of turnaround times.
almost all of them in the conversational mode. If the system cannot hand!e the existing number of

potential users, then degradation of service can only be
Scheduling systems have sometimes been designed avoided by allocating access to the system in some
on the basis of assumptions as to the frequency way. Scheduling algorithms cannot provide satisfactory
distributions of tasks by time required. Such reasoning allocation schemes, since the attempt to combine the
is generally circular. Users will adjust rapidly to the allocation with scheduling will give the system
upper limits of times allowed for various classes of undesirable operating characteristics.
service. Thus, if there is a one minute time limit for
tasks of a certain class, it will almost always be These basic reflections on the principles of design have
observed that the system is currently working on a been illustrated by a sketch of a possible control system.
task that takes one-half to three.quarters of a minute. The word "sketch" should be emphasized, for the
There are two reasons for this, one psychological, analysis would have to carry to much greater detail to
one statistical. The psychological reason is that users provide a workable system, a,,d even to demonstrate
will design tasks to obtain as much time as possible, that the system would really have the desirable
short of being bumped to a lower priority. The statistical properties it appears to offer. The purpose of the
reason is that the longer tasks in any class in fact sketch is not to recommend this particular control
absorb the bulk of the processing time available for system, but to outline how this philosophy of design
that class. For these reasons, statistics of task length could actually be applied.
reflect the scheduling algorithm quite as much as they
reflect the needs of users; hence, they are relatively If a control system can be designed along these lines,
useless for designing the system. it promises to be simpler in operation, and require

less memory and less calculation of priorities, than
time-sharing algorithms that have been described in

The reflections in this paper have centered around the the literature. As we have seen, there are a number of
notion that in designing a man-computer system, both directions in which it might be elaborated, but
human user and computer can be specified in terms elaboration would not necessarily improve its operation.
of the same parameters-principally, processing rate Its very simplicity should guard it against the kinds
and memory swap time-although man and computer of unanticipated consequer.ces that arise in systems

51 will have quite different numerical values for each that are excessively complicated and subtle. A half
parameter. Viewing a man-computer system as a more century of experience with production and process
or less symmetric structure in which the machine controls has taught the field of control engineering
initiates tasks for the man just as the man initiates tasks that simplicity is indeed a very important
for the machine suggests approaches to the control virtue for a control system.
of time-sharing systems quite different from those



Today is not yesterday.- We ourselves change.-
How then, can our works and thoughts, if they are
always to be the fittest, continue always the same.

Thomas Carlyle
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Jesse T. Quatse, Manager, Engineering Development

Generality and Computer Design advantageously employed to perform tasks such as
square root extraction or digital to analog conversion.
Common sub-systems, like the arithmetic unit,
might be specialized beyond recognition.

Obvious speed and cost gains are offered by such a
design strategy, if it can be followed. The difficulty lies
in the assumptions of the monotonous environment.

Like any other machine, a computer system earns its In reality, everything important is not known about
upkeep by performing the specific collection of tasks all tasks and the task environment is usually fraught
for which it was designed. The efficiency and speed with with variables. Over a sufficiently long period
which it performs these tasks is dependent upon of time, any computer facility is likely to encounter
how well it matches the task mix. Beneath the surface at least five uncertainties.
of the computer system, task fragments become tasks
for sub-systems, and beneath that level, sub-systems 1The domain of the task environment is imperfectly
are composed of sub-sub-systems. A good system known at design time, and is in a state of flux
match is therefore the gross effect of good component thereafter. In order to accommodate new tasks,
to task matching at many levels. It is not usuaily a computer facility can be expected to continually
an easy effect to achieve, offer new services and a greater number of

computations per day.
2

In order to visuaiize the difficulty, one can imagine a Neither the order of occurrence nor frequency"perfectly monotonous" task environment in which a of each task is exactly known and invariant.
particular computer system is to spend its operating life. 3
In this environment, everything important is known The nature of any task is subject to revision as

the task itself becomes better unrderstood or
about all tasks and no task ever changes in any way. improved upon.
All details of the system designed for this particular 4
perfectly monotonous environment could be safely fixed Improvements develop in the equipment and
once and for all at design time. A!I sub-systems could methods for performing the tasks.
be tailored precisely to fit the task environment without 5

Opinions vary on the criteria for judging how well
the danger that the speed or cost of any sub-system a system conforms to the task environment.
is inappropriate to the task performed.

When the list is read through the eyes of the computer
For example, time consuming memory acc, ses could manufacturer, the uncertainties increase with the
be eliminated by permanently "wiring in" all programs number of customers. No manufacturer can satisfy a
and program constants. Data transmission sub-systems large market with a single invariant computer system.
could be designed to accommodate a fi'ed number Some "generality" is necessary in order for a system
and type of tape units, disk units, etc. Normally, the to accommodate the unpredictable. The problem is

53 task environment is reduced to a relatively small how much generality and in what form.
number of common tasks from which all other tasks can
be obtained. In this perfectly monotonous environment, The word "generality" is used here to suggest
the best subset could be ascertained because the "applicability to the task environment". As one crude
relative value of each task is accurately known and indicator, a sub.system is considered to be more
unchanging. Unusual sub-systems might be general than another if it is able to participate in the



performance of more tasks. An alternative indicator monstrous system. Modularization and facility options
might be the containment relation. In typical arithmetic are means for introducing variability at the sub-system
units, for example, the multiplication sub-system level. This approach is clearly visible in the current
makes use of the adder sub-system. The adder could IBM product line, billed as a single "system 360".
be considered to be the more general of the two The implication is that variations in a single highly
because multiplication can be obtained from the adder general system are achieved by sub-system

without the existence of a special multiplication substitutions. Beyond the facility level, SDS offers the
sub-system. The more pragmatic approach is preferred "program operator" by which program subroutines
here. Otherwise, difficulty would arise in the comparison can be activated as if they were hardware opcodes.
of unrelated sub-systems such as an adder and an Customers who are able to afford hardware changes
input/output channel. In our terms, the adder is can replace the subroutines by sub-systems. Another
considered to be more general than the multiplier approach to variability at the micro-level is the
because it participates in at least as many tasks. micro-program of IBM. A very fast "ROS"

(read-only-store) memory can be rewired to execute
The penalty for excessive generality can be related to non-standard opcodes. Unfortunately, this kind of
the match between sub-system generality and task micro-level variability is impractical for many customers.

environment. A sub-system is "miss-matched" to a The money saved in system speea up must be balanced
task environment if it is able to perform tasks which against the cost of engineering, parts, installation,
never occur. A penalty is incurred if the substitution of and downtime during installation.
a well-matched sub-sysiem would reduce operating
time or cost. In reality, of course, many factors These organizational options are good; but variability is
influence the feasibility of such a substitution. required even beyond the opcode and register level.
For example, a system can be coaceived which erploys Unless variability extends all the way down to the basic
a small general purpose computer for the sole purpose operational circuits, tne variable unit may not be
of controlling a set of input/output channels. Being small enough to avoid miss-match penalties. For
mass produced, the small computer might cost less example, the "macro-modular" design cciicept extends
than a channel controller designed and constructed variability to the character length register level.
specifically for the system. The penalty for the The idea here is to provide a diverse collection of
miss-match is fictitious unless some means are found interconnectable modules for which all engineering
for equating production costs. problems are presolved'. In order to provide freedom

in the choice of interconnecting cable lengths, loading,
The problem at issue here can now be restated. A form heat dissipation, word length, and other design
of generality is required which avoids miss-match parameters, the modules contain synchronizing and
penalties in an uncertain or changing task environment, standardizing circuits, which car significantly increase
An obvious solution is to allow system changes after the time delays and costs of the task they perform.
design time. Each system is then potentially as The task environment of any particular module may
general as it is variable, include these "overhead" tasks which would not be

necessary if variability were possible at the basic

Manufacturers have long used variability to achieve circuital level. Miss-matches are possible because the

generality. Options in computer organizations have been overhead tasks do not necessarily occur in the task

54 offered from the system configuration level to the environment of interest. The penalties, in these cases,

opcode level. The union of all task environments of all can be severe. Apparently, three guide lines are

customers can be thought of as the single task beneficial to the attempt to minimize miss-match

environment for which a manufacturer must design a penalties.

monstrous computer system. An extensive product
line can then be viewed as variability in the single



1 sequential circuits. The information transmission
The generality of each sub-system should be initially devices are the interfacing circuits, such as read
well-matched to the expected task environment, amplifiers and level shifters, which adapt the task

Variability should extend from the system level to the real world.
down to the basic operational circuit.
3The production costs of implementing changes A control hierarchy exists whereby the control of any
should be insignificant, center can be seized by some center of higher generality

(if one exists). The effects of tasks performed at any
A model of the computer system can be developed which level excert the highest can be nullified so that the
follows the three guide lines just given. In the model, events of any task control center can always be
the computer is considered to be decentralized into controlled by an existing center of higher generality.
distinct sub-systems called "task control centers".
Each center is well-matched to the domain of a specific The hierarchy is achiev ,means of appropriate lines
task environment; but each is able to cooperate with of control and data communication. Each task center,
other centers in the performance of tasks not entirely except that of highest generality, has two properties.
contained in any one domain. The task control centers 1
act as intercommunicating building blocks from which At least one higher level center can supply and
an appropriate system for each task is constructed gain access to data used by the center.
and dissolved by other centers or by programs. 2

At least one higher level center can initiate tasks
v:!ich the center terminates. Synchronization can

A task is considered to be a sequence of events and be achieved in this way, assuming that tasks
a means for passing information. In hardware, the terminated by the higher level center are
sequence of events correspond to successive states of "aborted" and can be nullified.

The assumption is made, of course, that the time
required for control and data communication is small.
Otherwise, the penalties for miss-match can be

r, preferable to the cure.

.V' t m  IwI ,Exceptions have been made for the highest level of
34 lj | a ~generality. In our terms, the highest level is represented

j.3!li i' .',' -'by the computer program. The task control center
~ which corresponds to the program, in this hierarchy, is

l is the "main memory" of the system. As suggested in
S, - -a the parag,- hs concerning the "monotonous

i'002 environment", an important function of main memory is
1 .Wr',, e.' "to provide variability at the highest level of generality,

F il 11. the leve! at which all features of a task may be changed.
(It is interesting to note that the alternative definition
suggested, in the paragraph on generality, places
main memory at the lowest level of generality.) The
position of main memory as the apex of the hierarchy
can be seen by reviewing the normal organization of
computer systems. All tasks are initiated by opcodes

i_ _ _ __ emanating from' main memory and terminated by task
U control centers such as the arithmetic unit. The

.,-



conventional "start" signal to memory can be viewed as They represent the lowest levels of generality. For
the task termination signal from a lower level center. example, a visual display system might provide a
Finally, a communication path usually exists by which basic text editing and graphic manipulation task center
data and control can be passed between main memory at the display console. More elaborate tasks might be
and any task control center in the system. Because of its performed, under program control, by higher level
unique position in the hierarchy, main memory is the centers able to override or nullify the effects of the
"safest" candidate for the position of higher level center editing and manipulation task center. However, those
when a new task center is designed. The hierarchy tasks which do fall within the domain of these centers
is certain to remain intact since main memory is certain can be performed at high efficiency.
to be of higher level generality than the new center.

One form of visual display control is typified by a DEC
One purpose of the hierarchy is to provide an' tscape system in which a small general purpose computer, the
hatch" for emergencies arising from task environment PDP 8, acts as the task control center. The remainder
uncertainty. Any task being performed with high of the computer system is accessible by means of a low
efficiency by a center of low generality can also be capacity telephone line. The PDP 8 introduces more
performed at reduced efficiency by a center of highe r generality than necessary; but its low cost and high
generality, if one able to perform the task exists. performance tend to reduce the miss-match penalties.
The unexpected and unpredictable are accommodated The miss-match itself is reduced by a less general
by operations of low efficiency. The programs which console such as MAGIC2. Some important tasks are
specify these low efficiency operations are, in a sense, performed by centers specifically designed for a visual
"simulators" of task control centers which do not yet display task environment. However, the MAGIC system
exist. When a changing task environment ceases to runs the risk of being insufficiently general to
change and becomes better understood, efficiency accommodate unknowns and variables. The low capacity
can be regained by the modification or addition of telephone line imposes severe time penalties on tasks
the appropriate centers. performed jointly by the MAGIC console and the centers

of higher generality. One of two situations can be
Another purpose of the hierarchy is to provide a suitable expected. The match can be good, in which case the
structure for system development. The addition and system will appear to be cumbersome or even
modification of task control centers can be thought inappropriate for some visual display tasks, and
of as developmental rather than correctional, because obsolescence will be relatively rapid. On the other hand,
the process begin3 during initgal system design. As the if the match is not good, generality has been designed
system progresses before some task reality, reasonably into the console which might be better placed in the
detailed work is often in progress before some task rest of the system. The cost of the generality cannot
control centers are specified. When units are finally exceed the cost of higher capacity lines or the value of
available to the computer user, the level of great distance between the console and the rest of the
specification and design known as "system systern. If it does, the argument can be made that
configuration" is just in the beginning stages. Thus, the components which are allocated to the console
redesign is not entirely different from initial design. for the purpose of achieving generality might be more
The hierarchy is oriented towards a process which efficiently employed at the central processor level

might be called "continuing design". where they can be shared by other task control centers.

56
A system viewed in terms of this hierarchy appears to The visual display consoles currently operating at
become least general at the fringes where highly Carnegie represent an attempt to avoid these time
specific demands are made by the real world. penalties 3. Highly specific task control centers perform
Task control centers at the human interfaces have few the same kinds of tasks that are performed by the
lower level centers beyond them in the hierarchy. MAGIC consoles. The cost of high capacity was m3de



reasonable by limiting the distance between the Some of these sub-systems, along with the visual display
consoles and the main computer to 1000 feet. (The consoles, are represented in a conventional manner
distance could have been greater but not miles by Figure 1. The boxes are sub-system units and the
greater.) Were the distance requirements significantly lines are actual communication paths. This
worse, the same problems would have arisen. The "communication network model" does not show the
high communication capacity, along with certain other hierarchy of control explicitly. For example, the objects
features, were designed into the consoles in an called "macro-modules" can exert control over the
attempt to achieve a good match. visual display consoles, although the model of Figure 1

implies an independence of the two sub-systems.
Other sub-systems of the G-21, the current computer The problem is that the form of control itself is implicit.
system at Carnegie. are being designed or have been It resides in the types of communication possible
designed with the decentralization model in mind. rather than in the existence of communication paths.

Figure 1

The Communication Network
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Figure 2 explicitly shows the hierarchy of control, The main core memory serves as program memory for
which is identical with the hierarchy of generality, the central processors, the module controller, and the
It corresponds to a "control model" of the system. visual display controller. In addition, it serves as the
Since the model need not emphasize natural physical regeneration memory for the visual display consoles.
boundaries, the factorization into distinct sub-systems Typical tasks for the visual display controller are
is somewhat arbitrary. For example, the central keyboard character encoding; character and line image
processors can be thought of as a collection of formation, and format control. The task environment
sub-systems such as the arithmetic unit, the opcode also includes specialized editing and manipulation tasks
decoding unit, and the interrupt processing unit. such as character insertion between displayed
Beyond that, the arithmetic unit can be thought of as the characters and figure or character string translation
adder, the registers, and the control circuits. The across the tube face. Tasks are specified by data which
factorization chosen for Figure 2 emphasizes physical are stored in the main memory under control of the
boundaries as an aid to comparison with Figure 1. central processors and the module complex as well as

Figure 2
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the visual display controller itself. Therefore, all tasks 2
performed by the visual display sub-system can be The difficulties in designing, constructing, and

nullified or modified by the other sub-systems which debugging hardware tasks cannot be much greater,
for the programmer, than they are in software tasks.

control memory information. Since these sub-systems 3
have a higher level of generality, they are able to After the initial effort is invested by the designer
assist in the performance of visual display tasks or (who is probably a programmer, not an engineer),
entirely replace them as the need arises, it must be protected by low costs and reasonable

ease in achieving redesign.

The module complex is a means for introducing To summarize these conditions, hardware design can
variability without incurring severe miss-match be neither overly expensive nor overly difficult
penalties. Briefly, the sixteen macro-modules are if it is to be popular.
removable sub-systems interfaced to memory by the
macro-module controller. Priorities, channel capacities, The cost of hardware variability, in terms of both
and memory locations can be assigned by programs expense and degree of difficulty, can be broken into
stored in main memory. In this way, any macro-module three broad categories: material, installation time, and
can be given any share of the total resources. The tasks labor. Material costs have dropped radically, recently,
performed by the macro-modules are arbitrary and with the advent of integrated circuit-technology.
depend upon the needs of the moment. For example, a Megacycle flip-flops, which formerly sold ior $15 and up,
macro-module may be mounted which interfaces and are now available in single transistor cans for 3

samples an unusual input device such as a voice The reduced physical size offers further economic
receiver. Another may convert standard memory words advantages. The costs of frames and chasis are not
into "push-down" stacks. As needs change, a negligible. More important but less direct, smaller size
macro-module may be unplugged and replaced as if it means shorter wires. At the speeds common to
were a reel of magnetic tape requested by the user. contemporary computer circuits, shorter wires mean

lighter circuit loading. Circuits can operate at lowerThe mcdule complex is a way of following the second power levels thereby reducing power supply costs as

guide line given previously. Variability extends to the well as actual circuit costs. Miniturization also leads to

basic operational circuit because each macro-module labor costs. Since the entire circuit is contained within

can be designed and constructed at the micro-level. laocst.Snehenircrutisotiedwhn
canhe dueign e d corns ed at tuh micro-lthe transistor can, a great savings is achieved in the
The module complex is organized in such a way cntuto n tfigo rne icis

that design parameters such as word length and channel construction and stuffing of printed circuits.

capacity can differ for each macro-module. Within the Installation time falls into two categories: actual
macro-module itself, standard printed circuit cards modification time and debugging time. The first
can be substituted for each other or newly designed category is virtually eliminated by the module complex.
down to the integrated circuit. The decentralization The macro-module itself is the only piece of hardware
model is an attempt to follow the first guide line. affected by modification, and it plugs in. Debugging
The third guide line requires further elaboration. time is reduced by a special debugging mode in which

modules can be tested by diagnostic programs. AnotherThe continued construction of task control centers tcnqe aldSRBS nbe ehiint

such as the macro-modules is practical only if the debhile es O th es cni in
following conditions are met: debug while the rest of the system continues in

59 1 operation 5. The continued operation of the system

Labor and construction costs must compete during macro-module installation is essential to reduce
favorably with the cost of programming a task and installation costs. A more important reduction can be
having it performed on more general but less obtained by means of an automated design program
efficient sub-systems. which includes an adequate simu.ator. Debugging can

then be accomplished much more efficiently.



No such program is yet in existence at Carnegie.
When it is, labor costs will also drop significantly.
An adequate automated design program should permit
the programmer who has no engineering skills to
specify, "design", and debug macro-modules before
construction. Until then, a mild form of automated
design can be used. Forms can be completed by the
programmer and turned over to a technician who has
been taught to convert them into macro-module
specifications. Next, the specifications can be
transformed into macro-modules by a "wireman" of
lower skill than the technician. The technician is then
available to cooperate with the programmer in
debugging. Hopefully, the programmer, the technician,
and the wireman constitute a well-matched system.

The variability achieved by innovations such as the
module complex provide a form of generality which
avoids miss-match penalties. Minitufization.technology
has led to the drastic reduction in material costs
which make variability at this level practical. Automated
design programs promise reductions in labor time, References
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D.Sc. Technion, Israel Institute Ph.D. Carnegie Institute of Technology
of Technology (1959) (1965)

Hellmut Golde Alan J. Perlis
Visiting Associate Professor of Computer Science Head, Department of Computer Science;

Professor of Mathematics
DiplomlIngenieur Technische Hochschule (1953)
M.S. Stanford University (1955) B.S. Carnegie Institute of Technology
Ph.D. Stanford University (1959) (1947)

M.S. Massachusetts Institute of
Technology (1949)Robert A. Hopgood Ph.D. Massachusetts Institute of

Visiting Research Scientist of Computer Science Technology (1950)

B.A. Cambridge (1959)
M.A. Cambridge (1962) Herbert Alexander Simon

Professor of Industrial Administration and Psychology;
Associate Dean of the Graduate School of

Sheldon Klein industrial Administration
Assistant Professor of Linguistics and Computer Science Ph.D. University of Chicago
B.A. University of California at LL.D. (Hon) University of Chicago

Berkeley (1956) D.Sc. (Hon) Yale University
Ph.D. University of California at D.Sc. (Hon) Case Institute of Technology

Berkeley (1963)

John C. Strauss
Alien Newell Assistant Professor of Computer Science and

!nstitute Professor of Systems and Electrical Engineering
Communication Sciences

B.S. University of Wisconsin (1959)
B.S. Stanford University (1949) M.S. University of Pittsburgh (1962)
Ph.D. Carnegie Institute of Technology Ph.D. Carnegie Institute of Technology

(1957) (1965)
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Listing of Graduate Students

Babich, Alan
B.S. Carnegie Institute of Technology (1964)
M.S. Carnegie Institute of Technology (1965)
Balzer, Robert

B.S. Carnegie Institute of Technology (1964)
M.S. Carnegie Institute of Technology (1965)
Ph.D. Carnegie Institute of Technology (1965)

Baizek, Thomas
B.S. Carnegie Institute of Technology (1966)

Berglass, Gilbert
B.S. Rensselaer Polytechnical Institute
M.S. Carnegie Institute of Technology

Berman, Victor
B.S.E. Cooper Union (196t)
M.S. Carnegie Institute of Technology (1965)

Broste. Nels
B.S. Carnegie Institute of Technology (1963)
M.S. Carnegie Institute of Technology (1964)
Caviness, Bobby F.

B.S. University of North Carolina
M.S. Carnegie Institute of Technology

Coles, L. Stephen
B.S. Rensselaer Polytechnical Institute
M.S. Carnegie Institute of Technology (1964)

Cunningham, Thomas
B.S. Carnegie Institute of Technology (1961)
M.S. Carnegie Institute of Technology (1962)

Davis, J. Roy
B.S. University of Texas (1957)
M.A. University of Texas (1962)

Darringer, John
B.S. Carnegie Institute of Technology (1964)
M.S. Carnegie Institute of Technology (1965)

64 Darius, Irani
B.S. University of Bombay (1963)
M.S.E.E. New York University (1965)

Earley, Jay
B.S. Carnegie Institute of Technology (1966)



Evans. Arthur Krutar, Rudolph
B.S. Carnegie Institute of Technology (1957) B.S. Carnegie Institute of Technology (1966)
M.S. Carnegie Institute of Technology (1959)
Ph.D. Carnegie Institute of Technology (1966) Lansac-Fatte

License Faculte de Science (1962)
Ernst. George Ingevic ENSECHT
B.S. Carnegie Institute of Technology (1961)
M.S. Carnegie Institute of Technology (1962) Lauer. Hugh
Ph.D. Carnegie Institute of Technology (1966) B.S. Antioch College (1965)

Freeman, Peter Lieman. Stephen
B.A. Rice Institute of Technology (1963) B.A. Hunter College of the City University of N.Y.
M.A. University of Texas (1965) (1964)

Fikes, Richard LeQuesne, Peter
B.A. University of Texas (1963) B.S. University of British Columbia (1963)
M.A. University of Texas (1965) Lilly. Gordon

Fuller, Edmund L. B.Sc. University of Manchester, London (1948)
B.S. Iowa State University (1963) M.S. Carnegie Institute of Technology (1960)
M.S. Iowa State University (1965) M.Lit. University of Pittsburgh (1963)

Gibbons, Gregory Lindstrom, Gary
B.A. University of California (1963) B.S. Carnegie Institute of Technology (1965)

M.S. Carnegie Institute of Technology (1965)
Haney, Frederick
B.A. Ohio Wesleyan University (1963) Mayer, Bernard
M.S. Colorado State University (1965) B.S. Carnegie Institute of Technology (1961)

M.S. Carnegie Institute of Technology (1965)
Hansen, Gilbert
B.S. Case Institute of Technology (1962) McCreight, Edward
M.S. Case Institute of Technology (1964) B.A. College of Wooster (1966)

Iturriaga, Renato Fisico Manna, Zohar
B.A. University of Mexico (1963) B.A. Israel Institute of Technology (.961)
M.A. Carnegie Institute of Technology (1964) M.A. Israel Institute of Technology (1965)

Jeans, Christopher Mitchell, James
B.S. Case Institute of Technology (1965) B.S. University of Waterloo (1966)

Kane, Maureen Modesitt, Kenneth
B.A. Ladycliff College (1953) B.S. University of Illinois (1963)
M.A. Fordham University (1954) M.S. Stanford University (1965)

65 King, James C. Moore, James, Jr.
B.A. Washington State University (1962) S.B. Massachusetts Institute of Technology
M.A. Washington State University (1964) (1964)

Krack, John L. Oliver, C. Frank
B.S. Case Institute of Technology (1966) B.S. Carnegie Institute of Technology (1965)



Parnas, David
B.S. Carnegie Institute of Technology (1961)
M.S. Carnegie Institute of Technology (1964)
Ph.D. Carnegie Institute of Technology (1965)

Purcell. Gerald
A.B. Whitman College (1960)
M.A. Howard University (1963)

Ramey, Robert
Ph.B. Northwestern University (1954)
M.S. Northwestern University (1956)
M.A. Northwestern University (1957)

Ross, Daniel
B.S. California Institute of Technology (1960)
M.S. California Institute of Technology (1961)

Rubin, Ira
B.S. Pennsylvania State University
M.S. Carnegie Institute of Technology

Siklossy, Laurent
B.A. Yale University (1963)
M.A. Harvard University (1964)

Standish, Thomas
B.S. Yale University (1962)

Thompson, Carol
B.S. Carnegie Institute of Technology (1964)
M.S. Carnegie Institute of Technology (1965)

Taranto, Donald
B.S. City College of New York (1953)
M.S. Adelphia University (1959)

Wagner, Robert
B.S. Massachusetts Institute of Technology

(1962)
B.A. Columbia University (1964)

Waldinger, Richard
66 B.A. Columbia College (1964)



Listing of Staff Administrators

David H. Nickerson Director of the Computation Center

Polly A. Breza, Supervisor of 360 Programming
Task Group

Janet Delany. Research Programmer
Janet Fierst, Supervisor of Language Development
Albin L. Vareha, Jr., Programming Supervisor
Cynthia Yang. Research Supervisor
Harold Van Zoeren, Research Programmer

Charles Pfefferkorn Manager of Planning

Melvin Boksenbaum, Planning Assistant
Janet Wurmb, Technical Writer
Tom Cunningham, Supervisor of User Consultants
Pat Pringle, Administrative Assistant

Carl Lefkowitz Manager of Operations

Roy Weil, Supervisor of System Maintenance
and Testing

Queen Purcell, Supervisor of Operations
Nicholas Kydon, Supervisor of Use Analysis
Art Yaffe, Supervisor of Operations

67 Jesse T. Quatse Manager of Engineering Development

Manuel Langtry, Supervisor of Engineering
Development



1965-1966

Listing of Publications

Klein, Sheldon, "Automatic Paraphrasing in Essay
Format," Mechanical Translation (8) (1965).

Klein, Sheldon, "Control of Style With a Generative
Grammar," Language (41) No. 4 (1965).

Newell, Allen, "Limitation of the Current Stock of Ideas
for Problem Solving," Conference on Electronic
Information Handling, 195-208 (- 965).

Newell, Allen, "On Protocol Analysis," Computer
Science Department Colloquium, University of
Wisconsin, December (1965).

Newell, Allen, "Programs As Theories of Higher
Mental Processes," Computers in Biomedical Research
(2) 141-172 (1965).

Newell, Allen and Herbert A. Simon, "An Example of
Human Chess Play in Light of Chess Playing Programs."
Reprinted from Norbert Weiner and J. P. Schade (eds)
Progress in Biocybernatics (2) Elsevier Publishing
Company, Amsterdam (1965).

Newell, Allen and Herbert A. Simon, "Heuristic Problem
Solving By Computer," Margo A. Sass and William D.
Wilkinson (eds) Computer Augmentation of Human
Reasoning, Chapter 3, 25-36 (1965).

Newell, Allen and Herbert A. Simon, "Simulation of
Human Processing of Information," reprinted from the
American Mathematical Monthly (72) No. 2, Part I[
(1965).

Newell, Allen and George Ernest, "The Search for
Generality," Proceedings of IFIPS Congress,
New York (1965).

Newell, Allen, P. Keller, and F. Tonge, "Quikscript,"
Communications of the Association for Computing
Machinery (8) no. 6 (1965).

Perlis, Alan J., "Construction of Programming Systems
Using Remote Editing Facilities," Presented at IFIP
Congress, May (1965).

68
Quatse, Jesse T., "Strobes," presented at Fall Joint
Computer Conference, November (1965).

Strauss, J. C., and A. Lavi, "Parameter Identification in
Continuous Dynamic Systems," 1965 IEEE International
Convention Record, Part VI, IEEE, 49-61, March (1965).



Strauss, J. C., and W. L. Gilbert, "SCADS: Ginzburg , Abraham, "Homomorphic Images of Graphs
A Programming System for the Simulation of Combined and Some Applications to Automata Theory,"
Analog Digital Systems," Simulation Languages, Math Colloquium, SUNY at Buffalo, February (1966).
supplement to the Proceeding of the 1965 JACC,
June (1965). Ginzburg , Abraham, "Some Problems of Automata

Theory," Math Colloquium, Carnegie Institute of
Bond, Alan Hale, "A Systematic Study of the Baiags Technology, Pittsburgh, Pennsylvahia, April (1966).
Bootstrap Method," Physical Review, June 24 (1966). Hopgood, F. R. A., J. Hubbard, and D. E. Rimmer,

Cooper, David C., "The Equivalence of Certain "Weak Covalency in Transition Metal Salts,"
Computations," The Computer Journal 9 (4) 45-52 Proceedings of the Physical Society 88, 13-36 (1966).(1966). Iturriaga, Renato, T. A. Standish, R. A. Krutar, and
Cooper, David, "Mathematical Proofs About Computer J. C. Earley, "Techniques and Advantages of Using the
Programs," Machine Intelligence I, D. Miche (ed) Formal Compiler Writing System FSL to Implement a
Oliver and Boyd, to be published November (1966). Formula ALGOL Compiler," Proceedings of the SJCC,

241-252 (1966).
Cooper, David V., "Reduction of Programs to a Standard
Form by Graph Transformations," Proceedings of Klein, Sheldon, S. Lieman, and G. Lindstrom, Diseminer:
International Seminar on Graph Theory and Its A Distributional-Semantics Inference Maker, Carnegie
Applications, Rome, Italy, July (1966) to be published Institute of Technology, Pittsburgh, Pennsylvania,
January (1967). June (1966).

Cooper, David C., "Some Transformations and Standard Newell, Allen, Discussion of Papers by Dr. Gagne and
Forms of Graphs with Applications to Computer Dr. Hayes, Problem Solving: Research, Method, and
Programs," Machine Intelligence It, D. Miche (ed) Theory, Benjamin Kleinmuntz (ed) Wiley, 171-182
Oliver and Boyd, to be published June (1967). (1966).

Newell, Ailen, "Four Lectures on Artificial Intelligence
Cooper, David C., "Theorem Proving in Computers," and Information Processing in Psychology," Stanford
Advances in Programming and Non-numerical University, March (1966).
Computation, L. Fox (ed) Pergamon Press 155-182
(1966). Newell, Allen, "How Humans Solve Problems," Talk,

Robert Morris Junior College, to students and interested
Eve, James, G. A. Baker, H. E. Gilbert, and faculty, January (1966).
G. I. Rushbrooke, "On the Heisenodrg Spin 1/2
Ferromagnetic Models," Physical Letters 20, 146-147 Newell, Allen and Herbert A. Simon, "Information
(1966). Processing in Computer and Man," Science in Progress.

Wallace R. Brode (ed) Yale University Press,
Floyd, Rebert W., "Assigning Meanings to Programs," 333-362 (1966).
AMS Symposium on Applied Mathematics,
April 6 (1956). Parnas, David L., "A Language for Describing the

Function of Synchronous Systems," Communications of
Floyd, Robert W., "Edited Proceedings of Symposium on the Association for Computing Machinery (9) no. 2
Symbolic and Algebraic Manipulation," (1966).
9 Washington, D. C., March (1966). Parnas, David L., "On Facilitating Parallel and

69 Floyd, Robert W., "The Verifying Compiler: An Approach Multi-Processing in ALGOL," Communications of the

to Rigorous Debugging," Seminar, IBM, from the Association for Computing Machinery (9) no. 4 (1966).
New York Programming Center to IBM Poughkeepsieand IBM Kingston, Tuesday, April 5 (1966). Parnas, David L., "On the Preliminary Report of C3S, ' '

Communications of the Association for Computing

Machinery (9) no. 4 (1966).



Parnas, David L., "On the Use of the Computer in
Engineering Education Without a Programming
Prerequisite," Journal of Engineering Education (56)
no. 8 (1966).

Parnas, David L., "State Table Analysis of Programs
in an ALGOL-Like Language," Proceedings of 21st
National Conference, Association for Computing
Machinery (1966).

Peris, Alan J., "A. M. Turing Lecturer for 1966."

Perils, Alan J., R. Iturriaga, T. Standish, SICSAM
Symposium on Symbolic and Algebraic Manipulation,
"Definition of Formula ALGOL," Washington, D. C.
March 29 through March 31 (1966).

Quatse, Jesse T., "Visual Display System Suitable for
Time-Sharing," Seminar, IBM, Endicott L-boratory,
March 30 (1966).

Strauss, J. C., "Optimal Tracking of Nonlinear Dynamic
Systems," Symposium on Optimization Techniques,
A. Lavi and T. Vogl (eds) J. Wiley and Sons (1966).
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